See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/35246604

Complete state coding of timed asynchronous circuits /

Article

Source: OAl

CITATIONS READS
2 13

1 author:

Christopher D Krieger
Laboratory for Physical Sciences
30 PUBLICATIONS 122 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

ot Tensor Decomposition Performance Evaluation View project

roject  Migratory Thread Architecture Performance Evaluation View project

All content following this page was uploaded by Christopher D Krieger on 25 February 2014.

The user has requested enhancement of the downloaded file.

ResearchGate


https://www.researchgate.net/publication/35246604_Complete_state_coding_of_timed_asynchronous_circuits?enrichId=rgreq-d0d1405c739a7e5ec5f98b849226d813-XXX&enrichSource=Y292ZXJQYWdlOzM1MjQ2NjA0O0FTOjEwMjkzNDU0MDk4MDIyNUAxNDAxNTUyOTE3MDI4&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/35246604_Complete_state_coding_of_timed_asynchronous_circuits?enrichId=rgreq-d0d1405c739a7e5ec5f98b849226d813-XXX&enrichSource=Y292ZXJQYWdlOzM1MjQ2NjA0O0FTOjEwMjkzNDU0MDk4MDIyNUAxNDAxNTUyOTE3MDI4&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Tensor-Decomposition-Performance-Evaluation?enrichId=rgreq-d0d1405c739a7e5ec5f98b849226d813-XXX&enrichSource=Y292ZXJQYWdlOzM1MjQ2NjA0O0FTOjEwMjkzNDU0MDk4MDIyNUAxNDAxNTUyOTE3MDI4&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Migratory-Thread-Architecture-Performance-Evaluation?enrichId=rgreq-d0d1405c739a7e5ec5f98b849226d813-XXX&enrichSource=Y292ZXJQYWdlOzM1MjQ2NjA0O0FTOjEwMjkzNDU0MDk4MDIyNUAxNDAxNTUyOTE3MDI4&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-d0d1405c739a7e5ec5f98b849226d813-XXX&enrichSource=Y292ZXJQYWdlOzM1MjQ2NjA0O0FTOjEwMjkzNDU0MDk4MDIyNUAxNDAxNTUyOTE3MDI4&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christopher_Krieger?enrichId=rgreq-d0d1405c739a7e5ec5f98b849226d813-XXX&enrichSource=Y292ZXJQYWdlOzM1MjQ2NjA0O0FTOjEwMjkzNDU0MDk4MDIyNUAxNDAxNTUyOTE3MDI4&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christopher_Krieger?enrichId=rgreq-d0d1405c739a7e5ec5f98b849226d813-XXX&enrichSource=Y292ZXJQYWdlOzM1MjQ2NjA0O0FTOjEwMjkzNDU0MDk4MDIyNUAxNDAxNTUyOTE3MDI4&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christopher_Krieger?enrichId=rgreq-d0d1405c739a7e5ec5f98b849226d813-XXX&enrichSource=Y292ZXJQYWdlOzM1MjQ2NjA0O0FTOjEwMjkzNDU0MDk4MDIyNUAxNDAxNTUyOTE3MDI4&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christopher_Krieger?enrichId=rgreq-d0d1405c739a7e5ec5f98b849226d813-XXX&enrichSource=Y292ZXJQYWdlOzM1MjQ2NjA0O0FTOjEwMjkzNDU0MDk4MDIyNUAxNDAxNTUyOTE3MDI4&el=1_x_10&_esc=publicationCoverPdf

COMPLETE STATE CODING OF TIMED
ASYNCHRONOUS CIRCUITS

by

Christopher D. Krieger

A thesis submitted to the faculty of
The University of Utah
in partial fulfillment of the requirements for the degree of

Master of Science
in

Electrical Engineering

Department of Electrical and Computer Engineering
The University of Utah

December 2002



Copyright (©) Christopher D. Krieger 2002

All Rights Reserved



THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

Christopher D. Krieger

This thesis has been read by each member of the following supervisory committee and
by majority vote has been found to be satisfactory.

Chair:  Chris J. Myers

Erik Brunvand

Christian Schlegel



THE UNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the thesis of Christopher D. Krieger in its final form and have
found that (1) its format, citations, and bibliographic style are consistent and acceptable;
(2) its illustrative materials including figures, tables, and charts are in place; and (3) the
final manuscript is satisfactory to the Supervisory Committee and is ready for submission
to The Graduate School.

Date Chris J. Myers
Chair, Supervisory Committee

Approved for the Major Department

V.J. Mathews
Chair /Dean

Approved for the Graduate Council

David S. Chapman
Dean of The Graduate School



ABSTRACT

This thesis describes a method for solving the complete state coding problem
for timed asynchronous systems in an efficient manner. Timed asynchronous sys-
tems differ from untimed, speed independent systems in that any change to the
system or its timing may dramatically affect the reachable state space. Because
frequent state space exploration is time consuming, timing information is used
in a variety of ways to postpone or eliminate state space explorations. First,
timing information is used to predict the impact of a state signal on the overall
system. Second, concurrency information is used to narrow the search space to
timing-unique solutions. Third, timing information allows state signal insertion in
a timing-sequential, yet noncausal, manner. This permits insertion before input
events, an option not readily available in speed-inpedendent systems. Finally, by
considering timing, state signal insertion points can be chosen which minimally
increase circuit latency. The method has been implemented in the automated
design tool ATACS, and correctly and efficiently completes the state code for a

variety of established state coding benchmark systems.
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CHAPTER 1

INTRODUCTION

So many men, so many opinions;
every one his own way.
— Publius Terentius Afer (Terence)

Timed circuits are a class of asynchronous circuits whose specification includes
explicit timing information for signal transitions. Although precise timing relation-
ships are often unknown before synthesis and technology mapping, circuit designers
usually know enough to produce some reasonable, relative estimates. Applying even
rough estimates can lead to the removal of large amounts of circuitry that would
be required by a speed-independent design. These timing assumptions can then
be verified after synthesis when the actual timing values are better known. This
design style can lead to significant gains in circuit performance over asynchronous
circuits designed without timing assumptions [1].

Timed circuits are often specified using state graphs or Petri nets. The complete
state coding (CSC) problem is inherently present in systems specified by these
methods. This is because states in a state graph or markings in a Petri net
may hold only partial, or incomplete, state. While they work well for modeling
concurrency, causality, choice, and other temporal and graph properties, this lack of
self-contained complete state information means that many abstract asynchronous
systems cannot be mapped unambiguously to a present state-next state relation.
Consequently, these systems also cannot be directly synthesized. Thus, a method-
ology for adding the missing state code information necessary for synthesizability
is highly desirable. For this reason, a great deal of research has been invested in

exploring efficient solutions to this so-called complete state coding problem.



1.1 Related Work

Early work by Vanbekbergen (2] focuses on removing CSC violations from signal
transition graphs (STGs). This method restricts the STG to those without choice
and that include only a single rising and a single falling transition on each signal.
The algorithm modifies the STG until a connected lock graph can be found for
the STG. It does make an effort to incorporate timing information in the form of
a mean switching time for selected transitions. However, this information is only
used in computing the longest simple cycle as a performance estimate and does not
drive the CSC problem resolution process. The algorithm has complexity O(n®),
where n is the number of transitions, and is not guaranteed to find a solution, even
when one exists.

Lavagno et al. [3] initially investigated automated methods for solving the state
coding problem at the state graph level. They map an initial state graph into a
flow table synthesis problem. The state coding problem is then solved by using flow
table minimization and state assignment methods. However, solutions obtained
with their method correspond only to a restricted class of STG transformations.

Vanbekbergen et al.also work with complete state coding of state graphs [4]. By
working with a state graph, rather than an STG specification directly, they are able
to remove several graph restrictions. The algorithm they propose, while functional,
has several drawbacks. It requires knowing in advance how many state signals are
to be inserted. More importantly, the signal insertion point selection algorithm
casts the problem as one of boolean satisfiability, which has double exponential
complexity. The largest example published involves only 10 signals. Due to the
algorithm’s complexity, it is not easily extensible to large, real-world systems with
many signals.

Work on state graph methods by Ykman-Couvreur et al. [5] restricts the poten-
tial signal insertion points to ezcitation regions and switching regions. These are
small subsets of the whole state space in which a given signal is enabled to transition
or has just transitioned. This method is very successful at removing CSC violations

in a computationally efficient manner. Concurrency reduction as a means of CSC



violation removal is also performed. A framework for first reducing the state space
using concurrency reduction and then expanding it using signal insertion has been
presented [6]. Their algorithms are implemented in the tool ASSASSIN [7].

Work has also been done by Cortadella et al. in the area of state signal insertion.
Their work concentrates on specifications expressed as Petri nets. They have
developed a tool, petrify [8], which transforms between Petri nets and transition
systems. Transition systems are manipulated to introduce or enforce properties
such as pure choice, free choice, unique choice, place irredundancy, and complete
state coding. The transition system is then converted back into a Petri net which
now also retains these desired properties. Their algorithm inserts state signals into
regions, which correspond to places in the initial Petri net specification, intersections
of regions, or unions of intersections of regions. Since the excitation regions and
switching regions of Ykman-Couvreur are a subset of Cortadella’s regions, this algo-
rithm is more general and finds a larger number of valid insertion points. The cost
function used to select a solution does not consider performance directly, but seeks
to reduce an estimate of circuit area. Some provisions exist for specifying general
timing properties, such as “lazy transitions,” or “slow environment” assumptions,

but explicit timing information is not used [9].

1.2 Contributions of This Work

To date, most work done in this field has been limited to untimed circuits. This
thesis focuses on the unique aspects of timed asynchronous circuits. Timed circuits
use explicit timing information throughout the design and synthesis process to
produce better performing circuits. Several differences between timed and untimed
systems impact the complete state coding process. The major complication in the
design of timed systems is that any change to the system results in different system
timing, thereby altering the reachable state space. Thus, inserting a state signal
transition can have implications which are difficult to identify without completely
reexploring the timed state space. Because state space exploration is often a

lengthy endeavor, the method presented here resorts to various examinations of



available timing information in an effort to predict the impact of a given signal
transition insertion. Though reexploration of the state space is eventually necessary
to validate any predictions made during the state signal insertion process, it is done
infrequently.

On the other hand, the availability of timing information provides for analysis
and optimizations that would otherwise be extremely difficult. First, with timing
information, it is possible to restrict the causal set of transitions for a state signal
transition to those transitions that are timed-concurrent. Any causal transitions
that are not timed-concurrent are redundant. Removing redundancy greatly re-
duces the portion of the solution space that needs to be searched, thereby reducing
algorithm run-time. It also produces solutions with smaller support sets.

Second, intimate knowledge of a system’s timing enables the insertion of state
signal transitions that do not explicitly delay any other transitions in the system.
These so-called hanging insertions have minimal impact on the system and do not
increase system latency. They can also be inserted to occur before input events,
because, while they have a timing-determined sequential relationship, they possess
no causal relationship with respect to the input event. This type of relationship
is difficult to determine in untimed systems. The availability of hanging insertion
points increases the size of the solution space and often leads to solutions with
minimal performance impact.

Third, most methods for completing the state code of a system explored to
date have not considered performance of the resulting circuit as a parameter of
the state signal insertion cost function. Rather, they have placed emphasis on the
estimated circuit area of the state signal implementation logic. As fabrication
process technologies improve, area is becoming less and less a critical metric,
while circuit performance is rising in importance. Since complete state coding
is a necessary precursor to synthesis, aggressive designers cannot afford to ignore
performance issues during this step in the design process. Performance issues can
be partially addressed by determining a critical cycle through an asynchronous

system, conceptually related to the critical paths of synchronous designs. Using



this information to identify points where state signals transition only infrequently
and where they delay only noncritical transitions allows the overall performance

impact of a state signal to be minimized.

1.3 Overview

The remainder of this thesis describes a performance-driven state signal inser-
tion method for timed asynchronous circuits. First, a brief overview of Petri nets
describes some necessary terminology and introduces the Petri net extension used
to include timing bound information. Properties and terms of particular concern
to this work are then defined. With this groundwork laid, the state signal insertion
method itself is presented, with a particular focus on how this timed method varies
from previous work on untimed systems. A presentation of results obtained from
this CSC solution method, as implementated within the design automation tool

ATACS, and some conclusions comprise the final chapters.



CHAPTER 2

SYSTEM MODELS

If we spoke a different language,
we would perceive a somewhat different world.
— Wittgenstein

In order to reason about timed systems, several graph-based models are com-
monly used. One of these, a timed Petri net, can be used to specify and to model
concurrency, causality, and choice. However, many complete state coding problems
are more apparent when examined using a reachability graph or state graph. For

the sake of clarity, all of these graph types are defined below.

2.1 Timed Petri Nets

Timed Event-Rule (ER) or Timed Event/Level (TEL) structures are used by
the ATACS tool to model and to analyze timed circuit specifications and are able to
efficiently represent complex timed concurrent systems [1, 10]. Closely related to
timed ER structures, though distinctly different, are Petri nets. Both Petri nets and
timed ER structures can be used to describe the state variable insertion method
developed in this work. This thesis uses Petri nets to describe the theoretical aspects
of complete state coding. Note, however, that the internal data structure used by
the ATACS implementation is a timed ER structure. A detailed presentation of ER
structures is given in [1]. When the distinction between ER structures and Petri

nets is significant, it is noted in this text.



Formally, a timed Petri net (TPN) system is a modified one-safe Petri net

represented with the tuple N = (P, T, F, M,, A) where
e P is the set of places;

T is the set of transitions, T N P = (;

e FC (P xT)U(T x P) is the flow relation;

M, C P is the wnitial marking;

A: P — N x {N Uoc}, maps each place to a bounded time constraint.

Conventional Petri nets lack any notion of, and therefore notation for, timing
information, which obviously is core to specifying timed asynchronous systems.
Therefore, an extended Petri net model, known as a timed Petri net (TPN) [11],
is used. This extended model essentially appends a lower and an upper timing
bound, [l, u], to each place in the Petri net, as specified by the labeling function A.
For example, in Figure 2.1(a) the timing bounds on the place labeled 4 are [30, 60].
When a token arrives at a place, a theoretical timer begins to count from zero
upward. The place becomes marked immediately, but does not become satisfied
until the counter reaches the place’s lower timing bound. If the counter reaches the
upper timing bound, the place is said to be expired. The lower bound can be zero,
and the upper bound infinite, allowing untimed behavior to be expressed withing
this framework.

Given a transition ¢ € T, the set of all places which immediately precede ¢
is called the preset of ¢ and is given by et = {p € P | (p,t) € F}. Similarly,
the set of all places immediately following a transition ¢ is known as the postset
of t and is defined as te = {p € P | (t,p) € F}. Likewise, for a place p € P,
the set of all transitions which immediately precede p is the preset of p, denoted
op = {t € T | (t,p) € F}. The set of all transitions immediately following p,
pe={t €T | (p,t) € F},is its postset. A transition can fire when all places in its

preset are satisfied. It must fire before all places in its preset are expired.



A marking or a state M in a TPN is M C P, where each p € M is a marked
place. With a marking M, the untimed enabled function returns the set of transi-
tions 7, that have all places in their presets marked in M, or
T.(M)={teT|Vpecet,pe M}. A marking is graphically depicted by filling
each circle representing a marked place with a solid dot representing a token. In
Figure 2.1(a), the initial marking M, = {1} consists only of place 1, so therefore
only the uppermost place is initially filled with a token.

One additional important aspect of Petri nets is that they allow the modeling
of choice. This is achieved through the use of choice places and merge places. A
choice place is a place which has a postset containing more than one transition. A
merge place is a place with a preset containing more than one transition. Since
the Petri nets discussed in this thesis are exclusively one safe, only one of the
transitions in the postset of the choice place can fire for each time the choice place
is satisfied. A merge place requires only one transition in its preset to fire in order
to be satisfied. In Figure 2.1(a), place 3 is a both a choice place and a merge place.
Transitions {hungry, undress, bored} are in its postset. The firing of any one of
these transitions mutually excludes the firing of any other because it consumes the
token in place 3. Therefore, only one of these three transitions is allowed to fire
for each time a token arrives in place 3. Note that this method of modeling choice
requires all transitions ¢t € pe to share the timing bounds affixed to the choice place.
For example, the timing bounds between transitions dress and hungry must equal
the timing bounds between transitions dress and undress, and likewise dress and
bored. Occasionally, it is useful to have different timing bounds for each transition
following a choice place. The timed ER structure used in the implementation of

this work allows for these different timing bounds, as explained in [1].

2.2 Signal Transition Graphs
In a circuit, only signal transitions are possible, rather than the Petri net’s
generalized notion of transitions as arbitrary actions. If a Petri net is to model

a circuit, the Petri net must be converted to a signal transition graph (STG). A



signal transition graph is essentially a Petri net in which all system transitions
correspond directly to actual transitions on signals. This can be accomplished with
a mapping 7' — S x {+, —}, where S is the set of all signals and 4+ and — are used
to indicate whether the transition is rising from low to high, or falling from high to
low, respectively. Figure 2.1(b) shows an STG derived from the original Petri net
shown in Figure 2.1(a). All transitions in the Petri net have been mapped to rising
and falling transitions on four signals: dsd, hun,con, and duh. When depicted
graphically, STGs omit drawing all places except choice places, merge places, and
those in the initial marking. All other places, while not drawn, are considered to be
implicitly present, and their timing bounds are placed next to the edge containing

the implicit place.

2.3 Reachability Graphs and State Graphs
The reachable untimed state space for a TPN can be represented as a reachability
graph (RG). An RG is a graph with vertices which are untimed states (i.e. markings)
and edges which are possible state transitions. An RG is modeled by the tuple
(®,T'), where ® is the set of markings and I' C ® x T x & is the set of edges.

<30, 120> ?<30, 120>
wake up con+
<10, 40> }10, 40>
dsd+
<10, 20>
/ 3
hun+ dsd- = duh+
<30,60> <10,20> <30, 60> <10, 20> <10, 240>
’ <10,240>
eat Sleep work hun- - CoN- = duh-

(a) (b)

Fig. 2.1. Two representations of the gradlife system. (a) The timed Petri net
representation. (b) The signal transition graph representation.
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A state graph (SG) is an RG in which the states have been labeled with bit vec-
tors corresponding to the binary values of each of the system’s signals in that state,
and the transitions are labeled with the signal whose transition causes the system
to move between the two states. An SG is modeled by the tuple (S,®,T', \g, Ar)
where S is the set of signals, \s : ® — (S — {0,1}) is the state labeling function,
and Ar : T — § is the transition labeling function. S can be further partitioned
into the set of input signals, I, and output signals, O. The set of transitions on
output signals is defined as T, = {t € T | A\r(t) € O}, and the set of transitions on
input signals can be similarly defined. A state vector can be written as (vov;...vy,)
where each v; is either 0 or 1, indicating the value returned by the Ag labeling
function for the i signal for the given state. Figure 2.2(a) shows a state graph for
the STG shown in Figure 2.1(b). Each state is labeled with the value of \g for that
state.

There exists an SG for a corresponding RG if and only if there is a consistent
state assignment. A consistent state assignment exists if each state and transition
can be labeled such that between two states in a state transition the only signal
to change value is the one which experienced the transition. More formally, for an
RG, (®,I'), and a set of signals, S, an SG exists if there exists a Ap and Ar such
that:

V(IM,t, M") €T . Yu e S . (Ar(t) #uA re(M)(u) = Ae(M')(u))
V (Ar(t) = uA Ae(M)(u) # Aa(M')(u))

When state coding a system, it is useful to be able to determine in which states

a signal is untimed enabled to rise or fall. The sets rise(u) and fall(u) provide this

information and are defined as follows:

rise(u) = {M € ®| Ae(M)(u) =0A3t €T (M) A(t) = u}
falllu) = {Me® | e(M)(u)=1A3t €T (M).N(t) =u}
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Occasionally, it is useful to present the rising and falling information in the form
of an enabling vector, where, for each signal v in marking M, the corresponding

vector entry is:

O if \g(M)(u) =0A M ¢ rise(u)

if Ag(M)(u) =0A M € rise(u)

1 if \g(M)(u) =1AM ¢ fall(u)

F if Ae(M)(u) =1AM € fall(u)
In Figure 2.2(b), each state is labeled with its enabling vector. In the state labeled
(FRR1), signal dsd is high and enabled to fall, signals duh and huh are low and
enabled to rise, and signal con is stable high.

The switching region for a transition ¢, SR(t), is the set of states directly

reachable through transition ¢:
SR(t) = {M'e® | (M,t,M") €T}

In related literature, a switching region is often defined in terms of a rise or a fall

on a given signal, rather than on a given transition as it is herein defined. The

< dsd duh hun con >

inputs: dsd, duh, hun

outputs: con

con+

0001 R0OO1

dsd+

cont+

hup+/ wm hl,y FR

s
0001

con-

hun-

(a) (b)
Fig. 2.2. State graphs of the gradlife system. (a) The state graph with state
labels. (b) The state graph with enabling labels.
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distinction, while subtle, is important. Switching regions on transitions are not
necessarily maximally connected, and there is only one SR for any given transition.

These system models form the theoretical foundation upon which the complete
state coding algorithm is built. Extensive reference to these definitions and concepts

is made in the following chapters.



CHAPTER 3
COMPLETE STATE CODING

Of all men’s museries, the bitterest is this:
to know so much and have control over nothing.
— Herodotus

Circuits and Petri nets are fundamentally dissimilar. A circuit is a physical
device usually constructed from metal and silicon. A Petri net is an abstract
mathematical tool. For this reason, synthesizing a circuit which implements the
behaviors of a given Petri net is a rather unnatural process. It begins by generating
an SG from the consistent TPN or STG. From the SG, a present state — next
state relation is extracted for all output signals. Regrettably, this relation may be
ambiguous, and, if so, cannot be implemented directly by circuitry. Therein lies
the heart of the complete state coding problem. The rest of this chapter explicitly
defines this problem and provides the necessary formalism for understanding the

proposed solution.

3.1 Unique State Codes
Two markings are said to have a unique state code (USC) if they map to different
sets of signal values, and an STG is said to have a unique state code if all markings

have unique state codes. Therefore,

USC(M, M') Ao (M) # Ao(M')

USC(®) = Y(M,M')e®x®.USC(M,M)

Consider Figure 2.2(a). There are two states, each of which is labeled (0001).

Therefore, this state graph does not have a unique state code.
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3.2 Complete State Codes
Two markings are said to have a complete state code if they either have unique
state codes or if they share a state code but have the same output signal transitions
enabled in each marking. An STG is said to have a complete state code if all its

markings have a complete state code:

CSC(M,M") = USC(M,M") v (T.M)NT,=T,(M")NT,)

CSC(®) = Y(M,M') e ®xd.CSC(M, M)

A set containing all marking pairs which violate the CSC property is defined as:
CSCV(®)={(M,M")e® x & |- CSC(M,M"}

In Figure 2.2(b), there are two states with enabling vectors (R001) and (000F),
which each have the same state label, (0001). In the first state, signal dsd is enabled
to rise, while in the second state, signal con is enabled to fall. Because signal con
is an output, these two states differ in their output enablings and therefore lack a
complete state code. Consequently, the system as a whole does not have a complete
state code.

A circuit lacking a unique state code, but having a complete state code, has a
present state — next state relationship for input signals that is not uniquely defined.
Because control circuitry is being synthesized only for output signals, the burden of
distinguishing between two markings which map to the same signal values in this
case lies with the environment. In contrast, for the case in which a system lacks a
complete state code, the present state — next state relationship for output signals
cannot be determined unambiguously. The circuit must be augmented in some way
so that, using only signal values, the present state — next state relationship for all
output signals can be defined uniquely and unambiguously. The method described

herein accomplishes this task by adding state holding signals to make this possible.

3.3 Insertion Point Formalism
The insertion of a state signal into a system involves the addition of a new signal

and at least one rising and one falling transition on this new signal. Transition
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points (TPs) are one useful way of specifying where these transitions occur. A
transition point is an ordered pair of sets of transitions, TP = (st, et). At the
TPN level, each transition point represents a transition with incoming edges from
each of the transitions in the start transition set, or st, and with outgoing edges
to the transitions in the end transition set, or et. An insertion point consists of
an ordered pair of transition points, IP = (TPg, TPr), where TPg is the rising
transition and TPy is the falling transition.

To define to which markings in an SG a TP corresponds, the following prelimi-
nary definitions are in order. First, to facilitate the comparison of transition firing
times, the function 7(¢) is defined to return the amount of time elapsed between
the absolute start of the system and the firing time of transition £. The minimal

and maximal worst-case time differences between two transitions,

min(ti,ta) = min(t(t2) — 7(¢1))

max(ty,to) = mazx(T(ty) — 7(t1))

are the lower and upper bound on the time which can elapse between the firing of
the two transitions [12, 13].

As an example, suppose transition f+ in Figure 3.1 fires at time 0. Then
min(f+,e—) = (6 +4) — 0 = 10. If the upper bound on a state signal transition
is less than 10 time units, the transition can be inserted after the f+ transition
and it always occurs before the e— transition. In this case, e— is called a “witness
transition,” as its occurrence testifies that the state signal transition has already
occured. Likewise, since min(f+,d—) = 4+ 5 — 0 = 9, a state signal transition
inserted after f+ with an upper bound lower than 9 always occurs before d—. In
this case, d— is also a witness transition.

Witness transitions are by their nature conservative, in that they indicate
that the state signal transition occured some amount of time previous to their
transitioning. Suppose in this second example that the state signal transition has an
upper bound of 3. Then the witness transition d— actually indicates that the state

signal transitioned at least 6 time units previous to the witness transition. Each
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Fig. 3.1. A concurrent Petri net.

witness transition may occur the same or a different amount of time after the state
signal transition without affecting correctness. The presence of witness transitions
is what makes “hanging insertions” possible, as is discussed in Section 4.3.
Formally, the set of witness transitions for a transition inserted in a given TP
is defined,
Tw(st) = {ty € T | Viest min(t, ty,) > U},

where U is the greatest upper bound on a place in the preset of the new state
signal to be inserted into the given transition point. A transitive closure func-
tion transitioning_path(My, M,) returns true if there exists a sequence of markings

(My, My, ..., M,) connected by transitions, such that
Vi<n . Mj5 My Até (et U Ty(st))

is true. The intersection of switching regions for the start transitions forms the set

of seed markings, seed(st) = Miest SR(t). The markings in a state graph to which
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a given T'P; corresponds can now be succinctly defined as
M(TP,) = seed(st) U {M'|M € seed(st) A transitioning_path(M,M')}

The correspondence between state graph markings and Petri net transitions is
critical to the state variable algorithm’s efficiency, as it enables verification of
various properties of the transition point using whichever is more efficient, the
TPN or the SG.

A transition point bears a great similarity to a region, as described in [14].
However, whereas regions correspond to places in a Petri net, transition points map
to transitions. In many cases, the distinction is insignificant. For example, where
|st| = |et| = 1, a transition point corresponds to a single edge in the Petri net, and
uniquely identifies the implicit place on that edge. In this case, the TP corresponds
to a region, with the incoming signals being those in st, the outgoing signals those
in et, and all other events not crossing the border of the region. This relationship
holds when |st|, |et| > 1, if intersections and unions of intersections of regions
are considered. The two methods diverge in their respective handling of choice.
Both transition points and regions allow for the handling of free choice. However,
transition points can describe only points between transitions. If a choice place
lies between two transitions, the transition point only describes one of the possible
directions the token can go when leaving the choice place. Regions can describe
insertion into the choice place itself. For this reason, transition points describe a
strict subset of the insertion locations described by regions. Typically choice places
are in the preset of input transitions, which are often excluded from being insertion

points, so the utility of such insertion points remains an open research question.



CHAPTER 4

METHODOLOGY

The first rule of intelligent tinkering
1s to save all the parts.
— Paul Erlich

An algorithm for completing the state code of timed asynchronous circuits
is presented. Throughout, timing information is used in an effort to produce a
correct and realizable circuit with high performance. First, all unique and allowed
transition points are generated. Then an all-pairs combination algorithm is used
to combine the transition points into unique insertion points. Each insertion point
is subsequently examined, and those that are predicted to be the most useful in
solving the complete state coding problem are kept. Finally, a state signal actually
is inserted into the best insertion points, as dictated by a user-adjustable merit
function. If a complete state code has not been achieved, the algorithm continues
to explore various partial solutions, adding state variables to each of them until
complete solutions are found. The best possible complete solutions are then chosen,
according to a solution selection function. One or more of these lowest-cost complete

solutions is presented to the user for further analysis and customization.

4.1 Investigation of Direct Method
Conventional wisdom and Occam’s razor dictate that the simplest solution to a
problem is the best one. Perhaps the simplest way to solve a complete state coding
violation is to add a state signal to the system such that it holds a different value
in each of the two states forming the violation. This is true and is the essence
of all state signal insertion procedures. The methods diverge in where the signal

transitions on this state signal should occur. Examining the state graph, it seems



19

simplest that one transition should occur just before the system transitions into a
previously ambiguous, violating state. The other should occur just after the system
leaves the violating state. These points are easily identified on either an STG or
an SG.

However, while this approach is the simplest, it usually does not make ap-
preciable progress toward reducing the number of complete state code violations.
To understand this, consider a system consisting of two signals where both are
outputs. Assume that there is a state (OO) and a state (OR) in the state graph.
These two states form a complete state coding violation. Let us assume that
we add a state signal transition according to the method just described around
state (OR). Upon state space exploration, we find that the state is split into two
states, (OOR) and (OR1), one of which still is ambiguous. This phenomenon of
state splitting usually renders the direct, simple approach to selecting state signal
transition points useless. In some cases, it can actually cause the number of state
code violations to increase. This occurs when uniform state code violations become
complete state code violations because the state variable itself is an output. In
the cases where the simple approach does not cause state splitting and actually
removes state code violations, it removes the minimal number, making it inefficient
for solving systems with many state code violations. Clearly, a more sophisticated

approach is necessary.

4.2 Overview of the State Coding Method
Consideration of previous work in the field and an examination of the state
splitting problem led to the following algorithm. The overall algorithm consists of
three phases: exploration, insertion and verification, and solution selection. The
algorithm passes through these phases systematically on the way to an optimal
solution. Several different possible solution paths are examined in parallel, thereby
avoiding the high costs associated with misprediction and local minima. Detailed

explanations of each step of the algorithm follow this brief overview.



20

The exploration phase essentially generates a ranked list of valid insertion points.
First, a list of systems, Sy, is created. Each system in such a list of systems is
represented as an ordered pair (N, SGy), where N is the Petri net and SGy is the
corresponding state graph. Spes; holds the best systems from the previous iteration
and initially is set to contain only the original, incompletely state coded system.
Next, an insertion point list, I Py, is created and initially set to empty. The first
system in Sy is chosen and loaded. The exploration loop then begins, in which
an insertion point is generated and tested for validity through graph partitioning.
If valid, the relative merit of the IP is determined using a comparitor function
described in Section 4.6. If the merit is greater than that of the least useful IP kept
in I Pyeg, or if I Py.s; does not yet contain the user-specified number of IPs to keep,
this IP is inserted into I P, in a ranked fashion. This continues until all valid
insertion points have been considered. The algorithm then loads the next system
in Spesr and likewise explores all valid insertion points for this system, keeping those
IPs which are better than the least useful IPs already in I Py ;. This continues until
all valid IPs of all systems in Sp.;; have been considered.

The algorithm transitions into the verified insertion phase at this point. This
phase begins by clearing Spes¢. A state signal is inserted into the system correspond-
ing to the highest ranked IP in [P, using the process described in Section 4.7.
At this point, a new timed-reachable graph is found through timed state space
generation. This is an extremely expensive process in terms of run time, but is
necessary to verify that estimates made during the exploration phase are valid. The
number of CSC violations remaining in the system after the insertion of the state
variable is then computed. If no violations remain, the modified system is added
to the set of completely state coded solution systems, S;,. If violations remain
after the addition of the state variable, this system is added to Sy in a ranked
fashion that keeps only the num_paths best systems. The user sets num_paths
to the maximum number of exploration branches to be considered in parallel. If
none of the state signal insertions results in a system with fewer CSC violations, a

nonprogress counter is incremented. Otherwise, the counter is reset to zero. If the
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nonprogress counter reaches the max_non_progress_levels value set by the user, the
algorithm terminates, returning an unsuccessful status. Otherwise, if no solutions
are found, the algorithm loops back to the exploration phase and proceeds to add
additional variables from there. However, if solutions are found, control shifts to
the selection phase. Each solution is evaluated according to merit,,, the solution
evaluation function described in detail in Section 4.8. Up to num_sols of the best

solutions, as specified by the user, are then returned.

4.3 Allowed Transition Points
For the overall state coding algorithm to be both correct and efficient, transition
points must be generated which are valid and irredundant. A transition point z is
valid and irredundant if and only if:

stNet=10
Vt € et . t ¢ input transitions
th,tg € st . tl ||t t2
th,tg €et. tl ||t t2
Vt € et . min(7(t) —7(x)) <0

The first requirement, that st and et be disjoint, simply prevents transition
points from having unnecessary loops. This is ensured by choosing a transition
and adding it to st and et in a mutually exclusive manner. Likewise, the second
requirement is met by choosing only outputs as elements of the set et. Note that
prohibiting an input transition from being a member of et does not prevent the
insertion of a state signal transition sequentially before an input transition, but
rather prevents creating a causal relationship between the state signal transition
and the input transition. A causal relationship can alter the environment’s specified
behavior and is therefore forbidden. However, inserting a transition with causality
and timing such that it always occurs shortly before an input signal transition does
not constrain the environment and is therefore allowable. This distinction can only
be made in a timed system and calls for a simple example.

Consider the Petri net shown in Figure 4.1. With the proper timing bounds,
transition e— can serve as a witness transition for a state signal transition starting

after transition e+. This insertion is shown in Figure 4.2(a). As the postset of
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() (b)
Fig. 4.1. Two representations of a system with witness transitions. (a) The timed
Petri net representation. (b) The state graph representation.

transition csc+ is empty, this is a so-called hanging insertion. The firing time of
the witness transition is used as an approximate upper bound on the firing time
of csc+. The state graph, Figure 4.2(b), shows that, while ¢sc+ is concurrent
with d—, it does in fact always preceded the witness transition e—. Being able to
estimate what markings are impacted by a hanging insertion makes it possible to
sequence transitions before input transitions, and thereby opens up insertion points
not usually considered available using speed-independent methods.

The requirement that all elements of st and all elements of et be mutually timed-
concurrent (denoted ||;), also calls for additional explanation. Timed-concurrent

transitions are those transitions which are untimed enabled concurrently and, even
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Fig. 4.2. The system of Figure 4.1 after complete state coding. (a) The Petri

net showing a hanging transition for CSC+. (b) The state graph labeled with
enablings.
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when timing is considered, can fire in either order. A transition point for which
these conditions do not hold describes the same behavior as a simpler transition
point for which these conditions do hold. By eliminating redundancy at this early
point in the solution space exploration, the algorithm’s run time is tremendously
improved.

Again consider the Petri net shown in Figure 4.2(a). Transitions d— and f—
are sequential, not concurrent. Adding an edge from transition d— to csc— with
an upper timing bound less than 11 time units does not change the behavior of
the system. Therefore, TP, = ({d—, f—},{f+}) is a redundant and more complex

transition point than TP, = ({f—}, {f+}). When timed concurrency is considered,
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even transitions which are untimed enabled in the same marking, but which are
forced by timing to fire in a sequential fashion, are redundant. Consider transitions
d+ and e+. These two transitions are untimed concurrent, meaning that if timing
is not considered, they could occur concurrently. However, because the lower timing
bound on e+ is greater than the upper timing bound on d+, d+ always precedes
e+. These two transitions are not timed-concurrent. In other words, only those

transitions
tllita={ti,toeT |IM, My, Myc® M5 M €T A MB M,el}

are considered timed-concurrent.

The last redundancy-eliminating condition simply decrees that no transition
shall be made an explicit member of et if it can be used as a witness transition
instead. As a witness, the transition provides nearly the same infomation without
having to add the state variable to its support set and switching logic.

By way of example, the valid, irredundant transition points for the system
represented by the Petri net shown in Figure 4.1(a) are listed in Table 4.1.These
transition points assume a delay bounded by [5, 10] on the arcs leading to the state
signal transition. For each transition point, the start transitions are listed, then
the witness transitions, finally followed by the end transitions. If any set is empty,

the null set is listed.

TABLE 4.1

ALL VALID TRANSITION POINTS FOR THE SYSTEM OF FIGURE 4.1
({e-} {e+} 0) (et} {I+10)  ({e} 0 {t+})  ({F}{e+} 0)
({f-} {e-} 0) ({f-} 0 {f+}) (et} 04t ({e-} 0 {f})
({f+} {f-} 0) ({d+} {e+} 0)  ({d+}{e-}0)  ({d+} {f+} 0)
({d+} 0 {f}) ({et} {d+} 0)  ({e-}{d+}0)  ({f+} 0 {d+})
({f-} 0 {d+}) ({d-} {e+} 0)  ({d-e-} {e+} ) ({d-} {e-} 0)
({d-} 0 {f+}) ({d-e-} 0 {f+}) ({d-} 0 {f-}) ({d-e-} 0 {f-})
({d-} {d+}0)  ({d-e} {d+}0) ({e+}{d-}0)  ({e-} {d-} 0)
({ft+} 0 {d-}) ({f-} {d-} 0) ({3 {d-e-} 0)  ({d+} 0 {d-})
({d+} {e-} {d-})
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The algorithm generates all valid and irredundant transition points, as defined
by the immediately aforementioned criteria, and stores them in memory. During
subsequent stages, these TPs are combined into insertion points, which must also be
checked for validity. While storing the transition points consume some amount of
memory, the memory usage is not prohibitive. Tests show that this provides a very
significant decrease in runtime over implementations which require regeneration of

the transition points.

4.4 Allowed Insertion Points

The space of all possible insertion points theoretically includes all combinations
of transitions in st and et for the rising transition and all combinations of transitions
in st and et for the falling transition. Thus, the upper bound on the number
of possible insertion points is [27|%, the cardinality of the power set of distinct
transitions raised to the fourth power. Each of these insertion points may or
may not be consistent. Of those that are consistent, only a small number are
useful in actually reducing the number of complete state coding violations. The
algorithm attempts to categorize a potential insertion point as soon as possible, so
that needless consideration is avoided.

First, a computationally efficient check is made on the IP for a necessary, but
not sufficient, consistency condition. This weak form of consistency is termed
compatibility. If the compatibility test is passed, then a more rigorous check for true
consistency is performed. Because this second test is computationally expensive,
it is incorporated into the graph partitioning scheme, as described in Section 4.5.
If an insertion point is found to be consistent, it is then evaluated to determine
its utility in solving complete state coding problems. A user-specified number of
useful insertion points is stored, with an insertion point only being kept if its worth
is greater than that of at least one of the insertion points already being stored, or
the maximum number of useful insertion points has not yet been found. When the

maximum number has been reached, only if this IP’s value is greater than a stored
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IP will the less useful IP be eliminated and the new IP added to the set of highest
value insertion points.

The process begins by drawing two TPs from the pool of valid TPs previously
generated. These two TPs are selected such that each pair is unique in an unordered
sense. For example, if a pair (TP, TP;) is selected, then the pair (TP, TP)
will never be drawn from the TP pool. This prevents the generation of “mirror
solutions.” These mirror solutions differ only in the logic sense or phase of the
state signal, and do not represent truly unique solutions. A solution and its mirror
are equally valid and equally useful, and can be interconverted easily. Avoiding
mirrors exactly halves the overall size of the solution space.

The pair of TPs is then combined into an insertion point I P = (T Pg, T Pr) and
checked for compatibility. Incompatible insertion points are those which contain a

T Pr which is incompatible with 7' Pr, where compatibility is defined as:
(StTpR N StTPF = @) N (etTpR N etTpF = @)

Consistent state assignment dictates that any transition on a signal is followed by an
opposite transition before another transition of the same type occurs. Incompatible
insertion points always lead to inconsistent state assignment, because at least one
transition causes both the rising and falling transition on the state signal. Since the
compatibility check can be performed much more quickly than a full inconsistency
check, it is worthwhile to eliminate these insertion points at this stage of the
algorithm. The ability to check for consistency using either the SG or the TPN is
one of the benefits of the insertion point formalism duality.

To make more concrete the concept of insertion points, the valid insertion points
for the system represented by the Petri net shown in Figure 4.1(a) are listed in Table
4.2. These insertion points are composed from the transition points shown in Table

4.1.

4.5 State Space Partitioning
The purpose behind state state partitioning is twofold. First, it determines the

consistency of the given IP. Second, it determines the efficacy of the proposed IP,
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TABLE 4.2
ALL VALID INSERTIONS POINTS FOR THE SYSTEM OF FIGURE 4.1

{£} 0{t+}), ({d+} {e-} 0)) {£-} 0{t+}), ({e+} {d-} 0))
{t-} 0 {t+}), ({d+} 0 {d-})) {t-} 0 {t+}), ({d+} {e-} {d-}))
{e+} {H+} 0), ({d+} {e+} ) (({d+} {e-} 0), ({e-} {d+} 1))
{d-} {d+} 0), ({e+} {d-} 0)) {d+} {e-} 0), ({d- e-} {d+} 0))
{d-e-} {d+} 0), ({e+} {d-} 0)) (({e+} {f+} 0), ({f+} 0 {d+}))
{e-} 0 {t+}), ({d+} {e+} 0)) {e-} 0 {f+};, ({d+} {e-} 0))

((
((
((
((
((
((
(({
(£} {e+} 0),
(({
((
((
((
((
((
((

((
((
((
((
((
((
((
((
((
((
((
((
((
((
((

(
£} {e+} 0), ({e+} 0 {f-})) {t-} {e+} 0), ({e-} D {f-}))
0), ({d-} 0 {£})) {t-} {e-} 0), ({e-} 0 {£-}))

£} 0 {t+}), ({f+} {£} 0)) {t-} 0 {f+}), ({d+} {e+} 0))
{e+} 0 {-}), ({d+} {e+} 0)) {e-} 0 {f-}), ({d+} {e+} 0))
{e-} 0 {f-}), {d+} {e-} 0)) {d+} {e+} 0), ({d-} 0 {f+}))
{d+} {e+} 0), ({d-} 0 {f-})) {d+} {e-} 0), ({f+} 0 {d+}))
{d+} {e-} 0), {f-} 0 {d+})) {d+} {f+} 0), ({f+} 0 {d+}))
{t+} 0 {d+}), ({e+} {d-} 0)) {t-} 0 {d+}), ({e+} {d-} 0))
{d-} 0 {t+}), ({e+} {d-} 0)) {d-} 0 {t-}), ({e+} {d-} 0))

by revealing the number of CSC violations which are disambiguated by a state
signal inserted into the given insertion point. This could be determined by simply
inserting the state variable and counting the number of violations that exist in the
new system. Unfortunately, this method would require a complete reexploration of
the timed state space and generation of a new SG. It also would permit insertions of
signals with inconsistent state assignment. To avoid both of these problems, the SG
is partitioned into four subpartitions. Each state of the state graph is categorized
and annotated based on the excitation that a state signal inserted into the given
IP would have in that state, either rising, falling, stable high, or stable low.

First the rising transition is considered. All markings in M (T Pg) are annotated
as rising, indicating that the state signal would be untimed enabled to rise in
these markings. This procedure is repeated for M (T Pr), this time annotating the
states as falling. Once both the rising and falling markings have been annotated,
all markings between the rising markings and the falling markings are annotated
as being stable high. All markings between those annotated as falling and those

annotated as rising are annoated as beingstable low. If at any time during the
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partitioning process a marking is found to belong to more than one subpartition,
the partition, by definition, is invalid. A signal inserted in this insertion point
would not have consistent state assignment, so this insertion point is rejected.

If an IP is found to be consistent, then the usefulness of a state signal inserted
into the IP must be determined. A state signal is deemed useful if it resolves state
coding violations. This determination is also made using the partitioned state

graph, as part of the IP comparator function described below.

4.6 IP Comparison Function

A simple boolean function is used to compare the relative worth of two insertion
points. The betterof;p(I Py, IP;) function is used only to assign a relative ordering
to two insertion points. Thus, it is structured as a boolean comparator rather than
as a traditional cost function returning a numeric value. As one would expect,
the primary component of the insertion point comparison function is the number of
CSC violations that would exist in a system if a state signal were to be inserted into
the given IP. The number of CSC violations that would be disambiguated by this
state signal insertion is found by removing from CSCV(®) any pair of violations in
which one violation marking is in the stable low partition and the other violation
marking is in the stable high partition.

When calculating the cost of CSC violations which exist in the system, some
consideration must be given not only to the number of violations, but also to the
nature of the violations. A CSC violation can either be a violation which existed in
the initial system, or it can be a unique state coding violation which is converted
into a CSC violation by the insertion of the state signal. This happens when two
markings map to the same signal values, and all output enablings match between
the two markings, yet the enabling of the proposed state signal would not match
between the two markings. In other words, if two states comprising a unique state
coding violation pair are partitioned such that one state is annotated rising and the
other is annotated stable low, or one is in the falling partition and the other is in

the stable high partition, the state signal itself will not have a complete state code.
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For example, state (00) and state (R0) form a unique state coding violation, where
the left signal is an input and the right signal is an output. If, however, a new state
signal were to be added such that the state vectors were now (00R) and (R00),
this USC violation would be escalated to a CSC violation. Note that a state signal,
like the other outputs of the system, is generated by the circuit and must have
complete state coding itself. It is therefore possible to increase the number of CSC
violations in a system through the naive insertion of state signals. If a state signal
inserted into an IP removes one CSC violation and converts one USC violation
into a CSC violation, it is prefered over a partial solution that does not remove
any CSC violations, even though both have an equal number of CSC violations.
This heuristic is founded on the assumption that USC to CSC conversions are
easier to solve with additional state variables than those violations which occur
“naturally” in the system. This is not always true and occasionally misguides the
search. However, experience has shown that this rule of thumb is generally helpful.

The betterofrp function greedily assigns the lowest cost to the IP in which a
state signal would remove more CSC violations and escalate fewer USC violations
to CSC violations. If the number and nature of CSC violations do not indicate a
clear preference, the performance impact of the state signal rises to the forefront.
In this case, the IP with the smallest sum |et,ising| + |€¢aning| is selected. This
solution delays a smaller number of other transitions and leads to a circuit with
lower latency. Next, the IP with the smallest sum |st ising| + |t fauting| is selected.
Transitions enabled by fewer signals tend to be easier and smaller to implement.
In cases where both insertion points are equal in every aspect, one IP is given

deterministic yet arbitrary preference.

4.7 State Signal Insertion
Once an insertion point has been selected, the task remains of actually inserting
a state signal into it. This process begins by adding a transition to the TPN which
represents the system. Arcs are then added from each transition ¢ € st to the new

state. Similarly, arcs are added from the new transition to each of the transitions
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t € et. Each of these arcs defines an implicit place. The same steps are followed
for the complementary transition of the signal. After both transitions have been
added to the Petri net, the state signal is assigned an initial value based on the
partition into which the initial marking in the original TPN was placed. If the
initial marking is in the stable high partition or the falling partition, the initial
value is high. Otherwise, it is initially set to low.

The initial marking of each of the places on the newly added arcs must also
be determined. For places in the postset of a new transition, the place is initially
marked only if the transition ¢, € et can be reached from every ¢, € st and an initial
token lies on every one of these paths. If this is the case, the system deadlocks
without the addition of an initial token. If any place in the postset of a transition
is initially marked in this manner, the initial value of the state signal is set to the
value it would assume by the firing of this transition. Initial marking of places in
the preset of the new transition is determined through simple token flow analysis.
If this analysis indicates that deadlock occurs in the system, a token is added to one
of the places in the preset. This continues until sufficient tokens have been added
to resolve the deadlock. Finding a better method than this crude, yet effective,

approach is an area of ongoing research.

4.8 Solution Merit Function

Often, there are several signal insertions which independently resolve the incom-
plete state code of a given system. In this case, the algorithm must choose from
among them and return only the best solutions. The function merit,, evaluates
complete solutions based on an estimate of the area and delay of their imple-
mentations. The area is approximated using the number of literals needed. The
delay calculation is more complicated. The system delay is scored by computing a
stochastic cycle period metric, as described at length in [15]. In brief, the stochastic
cycle period is a weighted sum of possible delays, where each delay corresponds to
the amount of time a transition takes to fire when triggered by a signal in its support

set, weighted by the probability that this signal actually causes the given transition
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to fire. Using sums of these delays, a value for the average cycle period of the
timed circuit is found and used as a measure of the delay of the system. Solutions
that greatly impact the performance of the circuit will have greater system delays
than higher performance solutions. For example, suppose that a solution required
the insertion of a state signal transition such that it would lengthen the most
critical path, while another solution placed the state variable transition such that
it delayed a less common path. The transition time of the state signal is the same
in either case, but in the second solution it has a smaller impact on the average-case
performance of the system.
The return value of the merit,, function is computed using
meritsq(solution) = (1 — P) X area + P X delay

where P is a user-specified real value between 0 and 1, indicating the emphasis that
should be placed on performance. As P increases, delay becomes more important,
at the cost of greater area. As P decreases, minimizing circuit area takes increasing
priority over minimizing delay. This allows the user to choose a solution in keeping

with the objectives of the overall design.

4.9 General State Coding Algorithm

An algorithmic presentation of the described method for completing the state
code of timed asynchronous circuits is presented in Figure 4.3 through Figure 4.5.
At each step, timing information is used in an effort to produce a correct and
realizable circuit with high performance. First, all unique and allowed transition
points are generated. Then an all-pairs combination algorithm is used to combine
the transition points into unique insertion points. Each insertion point is sub-
sequently explored, and those that are most useful in solving the complete state
coding problem are kept. Finally, a state signal is inserted into the best insertion
points, as dictated by a user-adjustable merit function. If a complete state code

has not been achieved, the algorithm continues to explore various partial solutions,
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adding state variables to each of them until complete solutions are found. The
best possible complete solutions are then chosen, according to a solution selection
function. These lowest-cost complete solutions are then returned to the user for

further analysis and customization.



complete_state_code( (Ninitials SGN;piia)» Maz_non_progress_levels )

{

}
Fig. 4.3.

all_solutions = 0;

Shest = {(Ninitiat» SGN;piviam)}s

non_progress_levels_remaining = max non_progress_levels;

while ( (all_solutions == (}) and (non progress_levels remaining > 0) )

{
IPyesy = find_best_IPs( Spest );

(Spest» all_solutions) = explore IPs( IPyest, Spest );

}

if ( all_solutions # ) )

{

best_solution = pop( all_solutions );
foreach ( solution € all solutions )

{

if ( meritso; ( solution ) > merity, ( best_solution ) )
best_solution = solution;

}

return best_solution;

}

return unsolvable;

Overall algorithm for completely state coding a system.

33
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find best_IPs( Spest )

{
foreach ( (N, SGN) € Spest )
{
unique_TPs = all_irredundant TPs( (N, SGn) );
foreach ( TP4 € unique_TPs )
{
remove( TP4, unique_TPs );
foreach ( TPp € unique_TPs )
{
IP = (TPa, TPB);
if ( compatible( IP ) )
{
if ( consistent( IP ) )
ranked_insert( IP, betterofrp(IP), IPss );
}
}
}
}
return P g ;
}

Fig. 4.4. The algorithm for find best IPs( Spest )-
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explore IPs( IPes )

Fig. 4.5.

Snewt = 0
foreach ( IP € IP.s )
{
Npew = insert_state_variable( IP, system(IP) );
SGy,., = state_space_explore( Npew )3
if ( wviolations( SGpew ) < wviolations( system( IP ) ) )
{
non_progress_levels remaining = max non_progress_levels;
ranked_insert( (Npew, SGn,.,), violations( SGn,.., )s Snext );
if ( wviolations( SGn,,, ) == 0 )

{
}
}

else non_progress_levels remaining——;

insert( Npew, all_solutions );

}

return (S,.;:, all_solutions);

The algorithm for explore IPs( I Pyes; )-



CHAPTER 5

CASE STUDIES

Today’s weirdness is tomorrow’s reason why.
— Hunter S. Thompson

The complete state coding algorithm herein described is implemented as part of
the CAD tool ATACS and has been used to complete the state code of a variety of
timed and untimed systems. In every case, the goal was to produce a circuit with
optimal performance, regardless of the complexity of the logic needed to implement
the circuit. Results obtained from the state coding method implemented in petrify
are also presented. It should be noted that petrify’s cost function attempts
to minimize area without regard for performance, thereby favoring very different
solutions than the cost function used in this work. Also, the timed circuit design
method makes extensive use of explicit timing information. Therefore, a direct
comparison with speed-independent state coding methods is somewhat misguided.
However, since there is no other published method that specifically deals with timed
circuits, the speed independent results form a useful reference point.

In the figures, dashed lines between transitions on Petri nets or explicitly filled
places indicate that a place is initially marked. For the sake of uniformity, all delays
have been specified as [6, 14] to represent a gate delay of 10 time units with a £40%

tolerence. Environment delays are also [6, 14].

5.1 Simple Oscillator
The first system to be considered is the trivial example given in Figure 5.1. In
this system, signals a and b are inputs and c is an output. The only complete state
code violation pair is (R00,00R). In spite of the seeming simplicity of the system,

it cannot be completely state coded using speed-independent methods, because it
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(a) (b
Fig. 5.1. Two representations of a simple oscillator.
representation. (b) The state graph representation.

)
(

a) The timed Petri net

requires inserting a state transition before an input transition. Using a hanging
insertion point made available by the witness transition b—, it can be state coded
with the addition of one state variable. The hanging insertion of transition csc0+ is

timed concurrent with b+, as is easily seen in the state graph shown in Figure 5.2(b).

5.2 VME Bus Controller

The vme example is a simple controller which partially implements the VME bus
protocol. This system has two concurrent execution paths, making it marginally
more complex than the previous system. Signals dsr and [dtack are inputs and
signals d and lds are outputs. Both ATACS and petrify found a complete coding

using a single state signal. The original system, as shown in Figure 5.3(a), had a
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at

ﬁq \[6,14]"5

b+ CSCOo+

\[\6, 14]

b- ;[6,14]

(a)
Fig. 5.2. Two representations of a simple oscillator after complete state coding.
(a) The timed Petri net representation. (b) The state graph represenation.

cycle period of 62.3 time units. ATACS found a solution that increased the cycle
period by 6%, while petrify’s solution increased the cycle period by 28%. The
difference in added latency can be see by examining the two different solutions
shown in Figure 5.3(b) and Figure 5.3(c). Figure 5.3(b) shows that, using the
method presented in this thesis, the CSCO0— transition is placed such that it is

concurrent with the dsr— transition.
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%)\
Ids+

| dtaCk+ | dtaCk-

d+ Ids— d-

\

dsr-
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Fig. 5.3. Petri nets of the vme system before and after state coding. (a) The
original Petri net. (b) The system as state coded by ATACS. (c) The system as state
coded by petrify.
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5.3 HP Post Office Controllers

The sbuf-ram-write and sbuf-send-pkt2 specifications come from the Post Office
chip designed at Hewlett-Packard Labs [17]. In Figure 5.4(a), the original speci-
fication for sbuf-ram-write is given. Note that in the solution using timing, given
in Figure 5.4(b), only one state variable is needed, rather than the two required
by petrify’s solution, shown in Figure 5.4(c). The rising transition is a hanging
transition, and the falling transition is concurrent with precharged+. This solution
did not impact the critical path delay. The petrify solution impacted the cycle
time by 33%. The improved cycle time, however, has a cost in the controller’s area.

The sbuf-send-pkt2 specification can also be solved by both tools. However,
the petrify solution is too complex to be meaningfully displayed, and its perfor-
mance could not be calculated. For this reason, the sbuf-send-pkt2 example is not

presented in greater detail here.

5.4 Summary of Results
In summary, results generated by ATACS using the complete state coding method-
ology of this thesis tend to be larger than those generated by petrify, but with
much better performance. The results are summarized in Table 5.1. Listed are
the number of states, signals needed to achieve CSC, area in terms of literals, and
delay calculated using the stochastic cycle period metric. The etlatch example is an
edge triggered latch controller taken from [16]. The other examples were examined

individually in the corresponding sections of this chapter.

TABLE 5.1
SUMMARY OF RESULTS OBTAINED BY DIFFERENT STATE CODING METHODS
ATACS petrify
circuit states ‘ signals ‘ area ‘ delay || states ‘ signals ‘ area ‘ delay
etlatch 67 1 31 54 84 1 14| 68.8
vme 12 1 11 66 12 1 6| 79.8
sbuf-ram-write 52 1 37 119 58 2 19 160
sbuf-send-pkt2 24 1 16 171 24 1 21 -
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Fig. 5.4. Petri nets of sbuf-ram-write system before and after state coding.
(a) The original system. (b) The system as state coded by ATACS. (c) The system
as state coded by petrify.



CHAPTER 6

CONCLUSION

Time is a great teacher,
but unfortunately it kills all its pupils.
— Hector Berlioz

In the area of complete state coding, as in most worthwhile areas of research,
a complete understanding and mastery of the problem at hand cannot be achieved
in a single leap. Rather, understanding is reached through many small steps, each
building upon the last. This thesis presents new ideas and a detailed method for
completing the state code of timed asynchronous systems. Yet, at the same time,
it raises additional questions and leaves them to be answered by those who follow.
If timed asynchronous systems are to be synthesized into functioning circuits, the
complete state coding issue must be resolved. This work is a significant stride

toward that goal.

6.1 This Work’s Major Contributions
The method herein presented correctly completes the state code for timed
asynchronous systems. It handles systems with causality, concurrency, and choice.
Unlike other existing methods, it takes full advantage of timing information. This
allows state signal insertion in a sequential, yet noncausal, manner. It also enables
the insertion of state signal transitions such that they preceed input transitions.
This work is somewhat unique in that it also capitalizes on timing information by

using stochastic performance estimates during solution selection.
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6.2 Improvements to Multivariate Solutions

Although systems requiring more than one state variable are properly state
coded, some optimization opportunities are currently untapped in the area of
multivariate insertion. At present, each state signal is inserted one at a time, and
only two transitions are allowed for each state signal. If multiple transition pairs
were allowed per state signal, it could decrease the number of variables needed in
cases currently requiring many state variables. Improved results could be obtained
if the total number of state variables necessary were estimated, then used to guide
the overall state coding process. This type of estimate would also be useful for

bounding partial solutions in a “branch and bound” manner.

6.3 Method to Ensure Persistent Solutions

Both timed and speed-independent specifications have been successfully state
coded using the current algorithm. The results obtained from this method compare
favorably with those from established speed-independent algorithms in terms of final
circuit performance. In terms of circuit area, there is clearly room for improvement.
However, the large discrepancy in area is somewhat misleading. For many cases,
it is because the state variable insertion has introduced nonpersistency into the
system. To correctly synthesize the now nonpersistent system, additional logic is
necessary. This nonpersistency is not intrinsic to the method, but merely a side
effect that manifests itself in some solutions. If the algorithm were modified to
identify nonpersistency as it occurred, and reject or deprecate these solutions, the
resulting simpler implementations would have a synthesized area more in line with
values reported by other methods. A method to identify nonpersistency at an early
stage in the algorithm has been identified, but additional work is necessary to refine

and to validate it.

6.4 Other Areas for Future Work
The cost function currently in use is effective at choosing a solution by consider-
ing the relative importance of performance and area. However, there is no provision

for establishing bounds on the area or performance. If a design with minimal area,
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yet no more than some specified delay, is the target, the cost function’s P parameter
must be manually adjusted until such a solution is generated. Switching the solution
selection method to a Pareto point based system would increase its flexibility.
The current deadlock resolution method is generously considered to be crude.
A method with stronger theoretical underpinnings would do a better and more
efficient job than the current brute force technique. This area should certainly be

examined and resolved in the near future.
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