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ABSTRACT

This document describes an improved method of formal verification of complex

analog/mixed-signal (AMS) circuits. Currently, in our LEMA tool, verification proper-

ties are encoded using labeled Petri net (LPN). These LPNs are generated manually,

a tedious process that requires the user to have considerable familiarity with the

tool. To eliminate this time-consuming process, our LEMA tool is extended to include

a translator that converts properties written in a property specification language to

LPNs. New methods are also implemented to separate the transient period from the

stable output period, thus improving the generated model. Also, the current method-

ology generates the circuit models for the input values used during the simulation of

the circuit. So, models generated for other control input values are not accurate. In

this case, accuracy of the generated models is improved by using a linear abstraction

method like interpolation.
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CHAPTER 1

INTRODUCTION

The last decade has seen a tremendous growth in wireless and communication

devices. This increasing consumer demand made circuits grow in complexity as they

shrunk in size. In spite of being called a ’digital age’, many of the systems used

today have analog/RF components in them because real-world signals are analog in

nature. Circuits get complex because of increased functionalities and performance

requirements. To make sure circuits perform their intended functions, validation

is important. SPICE simulation is still widely used for the verification of analog

circuits. Although accurate, it gets very slow for complete functional verification of

the circuit.

Boolean design, as well as simulation and verification, can be done efficiently

with automated tools. However, the continuous nature of analog signals make it

difficult to automate these processes for analog circuits. Thus, analog circuits have

custom design processes which are very time consuming. The increased performance

requirements these days have made this even more difficult. Shrinking of circuit size

which is the direct effect of reduced transistor sizes is a boon for the digital circuit

industry as it reduces the power consumption and increases the speed. However, it

did not work as well with the analog industry as it created challenges such as reduced

headroom available at the output, output impedance mismatch, process variation,

and increased noise. Thus, design and validation has become even more daunting.

For example, circuits like analog filters and analog phase locked loops (PLLs) are very

difficult to design and verify, always leaving some room for error. To take advantage

of automated tools available for digital circuits, a number of these inherently analog

circuits are replaced by their digital counterparts. There now are digital filters, PLLs,

etc. Although this solves some problems, it brings some other challenges. Inclusion
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of digital blocks in analog circuits makes the verification at the interface of the analog

and digital blocks difficult. Verilog-AMS and VHDL-AMS models of the circuits may

be used for simulation and verification. In this case, input conditions are provided to

the abstract model, and it is then simulated for those input values. Output is then

checked to see if it meets the functional requirements. Although more efficient than

SPICE simulations, it has some shortcomings. This method gets slower for big and

complex circuits. Also, as the input conditions are provided manually, circuits might

not get simulated for all the critical cases. Finally, these HDL models may not be

accurate.

Formal verification methods consider all the possible input conditions and possible

states of the system and generate a state-space for the system. These techniques

have the potential to be a better way of validating the functionality of complex AMS

circuits. Therefore, various efforts have been made to devise new methods of modeling

AMS circuits and verify their correctness [1]. These models can be checked against

verification properties to ensure that the circuit is correct. Formal verification can

be grouped into theorem proving and state space exploration methods. In theorem

proving, a designer generates a mathematical proof that the specifications of the

circuit are met by its model. This makes verification easier at different hierarchical

levels. Work done in [2, 3, 4] emphasizes theorem proving methods for verification

of analog circuits, but these methods require a lot of expertise on the part of the

designer, as well as the user.

In state-space exploration methods, the system is modeled as a state-space and

then checked for all the inputs for all the possible states. It brings the advantage of

automating the verification process, but it faces the problem of state-space explosion.

Thus, it is essential to have a tool that can model the circuit at the right level of

abstraction while maintaining accuracy. State-space exploration is further divided

into equivalence checking and model checking. In equivalence checking, two models

of a circuit are analyzed to check if they are functionally equivalent. This approach

makes it possible to compare circuits at the same level, as well as at different levels

of abstraction. In [5], the authors present an equivalence checking method for formal

verification of linear analog circuits by representing the circuit’s transfer function in
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the ’s’ domain. Here, parameter variation is also taken into account. While this

analysis can be applied only to linear circuits, in [6], the authors explain a method

for time domain analysis of nonlinear circuits.

Model checking methods are useful for the verification of dynamic properties of

the system. First, the circuit is modeled at the right level of abstraction and then

reachability analysis is done to check if a certain state is reachable in the whole

state space of the circuit. The model checking method is used in [7] for verifying

nonlinear analog circuits. The authors discretized the continuous state-space to create

an abstraction and represent the characteristics of transistors in multidimensional

cubes. Conventional model checking algorithms are then used to verify the circuit.

Polyhedral-based techniques are used in [8, 9, 10, 11, 12] to overcome the problem

of computational complexity of the previous approach. In [13], the authors propose

a bounded model checking tool for the verification of quasi-static behavior of AMS

circuits using SAT modulo theories. However, the use of real numbers instead of

rational numbers compromises the accuracy. Run-time verification methods are

described in [14, 15] to eliminate the problem of state-space explosion. Here, logical

monitors are developed for run-time verification of real-time, hybrid systems. A

test-bench is attached to the circuit to be verified and is simulated. The assertions

in the model are checked during the simulation; thus, there is no need for a circuit

model before verification. Although interesting and simple, it faces many challenges,

such as synthesizing accurate monitors from specifications and writing frequency

domain properties. Dastidar et al. in [16] generate the FSM for the system using

SPICE simulation traces. Here, the continuous state-space is discretized which is

then converted to an acyclic, time-bounded FSM.

1.1 Model Generation

The key of successful verification lies in efficient modeling of circuits. A lot of work

is being done to model circuits to capture the behavior correctly. Various techniques

for abstracting linear systems have shown promising results [17, 18]. In [19], authors

have explained asymptotic waveform generation method to model linear circuits like

interconnect RLC models. The approach in [11] creates finite-state abstractions of
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continuous analog behavior. Despite all this, modeling behavior of nonlinear circuits

is a problem far from solved. The approaches used for modeling nonlinear systems

rely on approximating them as either piecewise linear or picewise polynomial and

then applying the abstract modeling techniques of the linear or weakly nonlinear

systems [20]. In [21], the authors have proposed a method to model nonlinear circuits

where they represent these circuits as piecewise linear systems and then reduce these

pieces. In [22], the authors build the macro-models of the nonlinear circuits. It is

done by catching the trajectory of the states that the circuit goes through and then

using linearization among the time points in between. In [23], authors present a

compact nonlinear model order-reduction method (NORM). It is suitable for model

order reduction of a class of weakly nonlinear systems that can be well characterized

by low-order Volterra functional series. In [24], the authors talk about the need

of hierarchical modeling of AMS circuits and propose algorithmic techniques for

automatically extracting a suitable nonlinear macro-model from a device-level circuit.

Here, a circuit is represented by a small set of mathematical equations extracted from

a large set of mathematical equations that model the circuit. Dastidar et al. in [16]

generate the FSM for the system using SPICE simulation traces. Here, the continuous

state-space is discretized which is then converted to an acyclic, time-bounded FSM.

LPN Embedded Mixed-Signal Analyzer (LEMA) [25, 26] is being developed for

formal verification of AMS circuits. This tool supports a simulation aided verification

methodology where the simulation traces generated by SPICE level simulation of AMS

circuits are used as an input to the tool. The tool generates a labeled Petri net (LPN)

model for the circuit. This model can be checked against the property given as input

to the tool. Here, the input trace is discretized and a state-space is generated. The

generated model contains information present in the simulation trace input. Thus,

the model generated is specific to the input values considered during simulation. A

more generalized form of the model is necessary to make sure the model works when

subjected to different input conditions during verification.
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1.2 Property Generation

Having a good model of the circuit or system is not enough. If the property cannot

express the expected behavior efficiently, model checking cannot be advantageous. If

the circuit is modeled in HDL languages, then it is customary to have the properties

written in HDL languages too as it makes the verification easy. Temporal logic is

useful in defining the properties over time and thus important for specifying AMS

properties. In [27], the authors describe monitoring algorithms for checking temporal

properties of discrete, timed, and continuous behaviors. Property Specification Lan-

guage (PSL) is a formal specification language for specifying properties of both digital

and AMS circuits. In [28], the authors used PSL to express temporal properties of

the AMS circuits. In [29], the authors apply a property-based checking methodology

where the circuit behavior is expressed in PSL in the form of assertions. The method-

ology is applied to the simulation traces generated from practical DDR2 interface

design. In [30], authors talk about modeling the AMS design in terms of a System of

Recurrence Equations (SRE). Then, an assertion-based verification method is defined

using the symbolic trace of SRE. For the verification of static and dynamic properties

of analog systems, the authors in [31] present a new Analog Specification Language

(ASL) to specify the properties efficiently. In [32], the authors describe writing

properties to handle the asynchronous behavior inherent in synchronous circuits.

In [33] , the authors discuss a variant of temporal logic tailored for specifying desired

properties of continuous signals. In [29], the authors discuss automatic construction

of an observer from the specification in the form of a program that can be interfaced

with a simulator. In [34], the authors have proposed a new syntax and semantics for

real-time regular expressions, which extend existing SystemVerilog assertion (SVA)

regular expressions. In [35], the authors describe a methodology for dynamically

verifying complex AMS properties. These properties are encoded with the help of

local variables and mapped into SVA properties.

1.3 Contributions

Verification is done by checking the generated model against the property that

the circuit is supposed to satisfy. This property is currently encoded using LPNs.
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Building properties in this way is a tedious process, and it gets even more complex

for an AMS circuit like a PLL. Also, it requires the user to have a considerable

familiarity with the tool. To solve this problem, we have developed a new property

language so that it is easy to write the properties for AMS circuits. However, as the

verification properties in LEMA have to be in LPN format, it is important to convert

these properties in LPN. To enable this, we have created a translator that converts a

new property specification language into LPN models.

This thesis also describes new methods that improve and generalize our model

generation method. Whenever an input to the circuit is changed, the output changes

but does not settle down to the expected value immediately. Instead, it goes through

a transient period during which its value is unpredictable. This thesis contributes

a method to model this transient period, thus separating it from the stable output

period.

Our tool takes SPICE simulation traces of the circuits as input for model gener-

ation. Therefore, the circuit is modeled only for the input values considered during

simulation of the circuit. To make the model represent the circuit behavior for a wide

range of input values, we have implemented a type of linear abstraction, interpolation.

This work assumes that though analog circuits are considered nonlinear, it is always

possible to convert a circuit to a set of variables where the linear abstraction holds [36].

Thus, the important contributions of this thesis are,

• Development of a new property language and a translation method to convert

these properties to LPN monitors.

• Improved model generation by separating transient period from stable period.

• Further generalization of AMS models using a linear abstraction.

1.4 Thesis Overview

This thesis is divided into five chapters. Chapter 2 gives a detailed description

of the design and working of the tool LEMA. It also introduces LPNs and describes

their usefulness in modeling AMS circuits. Chapter 3 and Chapter 4 describe the

contributions that this thesis has made. Chapter 3 highlights the need of the new
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property language for verification. It details the new language developed, and its

conversion to LPN properties. Chapter 4 deals with the improvements made in

generating models by separating the transient period of the circuit operation from

the steady state. It also states the need for generalization of models and discusses

interpolation as a means to achieve it.



CHAPTER 2

BACKGROUND

This chapter introduces the the tool LEMA. Section 2.1 describes the LEMA

functional flow. Section 2.2 then describes LPN syntax and semantics. Section 2.3

describes the LPN generation process. Finally, Section 2.4 describes the verification

property to be used with the generated models to check the correctness of the circuit.

2.1 LEMA

The enormous tool support that digital circuits have received has brought about a

revolution in the way digital circuits are synthesized, simulated, and verified. Because

of the basic Boolean nature of digital circuits, it has become possible to automate

these design steps. Verilog or VHDL models of digital circuits are used with these

tools to generate gate-level and transistor-level circuits. Layout is then built for

these circuits. Circuit and layout is checked for errors. Simulation and verification

is automated too. While simulating the circuit for a particular set of inputs, a set

of expected outputs can be stored and the simulation output is compared with it to

check the correctness. Such support for AMS circuits is not available. Thus, design

is still a custom process and simulation is still a widely used method for verification.

It is very tricky to abstract an AMS circuit into a HDL model as the functionalities

of these circuits are complex.

LEMA supports a simulation aided verification (SAV) methodology to generate

the abstract models for AMS circuits. Fig. 2.1 shows the block diagram of LEMA.

This tool takes as input the simulation traces generated by SPICE level simulation

of the circuit. These traces are compiled by our model generator into an abstract

SystemVerilog model for the circuit. This model can then be combined with an RTL

model for the digital components for system-level simulation. Our model genera-
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Figure 2.1: LEMA block diagram.

tor also allows the user to provide a verification property which is converted into

SystemVerilog assertions. These assertions can then be checked during simulation.

Finally, our model generator can generate a formal model of the circuit in the form of

a LPN [26, 37]. This LPN which includes the verification property can be analyzed

by our model checker described below. The model checker checks that the verification

property holds under all variations allowed by the model. If the property fails, an

error trace is generated which can be analyzed to find possible errors in either the

circuit or the abstract model.

LEMA includes three model checkers which differ in how they represent and

explore the state space. The first uses zones represented with difference bound

matrices (DBM) [39]. This method represents the infinite state-space within a finite

number of state equivalence classes called state sets. The continuous portion of the

state-space is represented by different zones, using matrices of inequalities called
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DBMs. These inequalities are of the form xi − xj ≤ kij, where xi and xj are the

values of a transition’s clock or the continuous variables and kij is a constant or ∞,

if it is unbounded. DBMs are a restricted form of convex polygons that use only 45 ◦

and 90 ◦ angles which indicates that the continuous variables can change with rate one

only. However, in LEMA, a technique called warping is used to represent continuous

variables changing with rates other than one. Reachability analysis is then performed

to check the model for fail transitions. During this analysis, if the property fails, an

error trace is generated by the tool.

The second model checker uses binary decision diagram (BDD). For model check-

ing using a BDD, the relationships between continuous variables are represented using

separation predicates in a canonical form. These separation predicates are mapped

to Boolean variables enabling the use of BDD operations to evolve the state. The

algorithm begins with the complement of a timed computation tree logic (TCTL)

property and the reachability analysis is done backwards. This process continues

until either finding an initial state or the state representation does not change. If an

initial state is reached, it indicates that a failure state can be reached.

The third model checker uses a satisfiability modulo theories (SMT) solver [38].

In the SMT-based model checker, the system model is transformed into an SMT

formula composed of the initial state, transition relations, and assertions. As SMT

is a bounded model checking method, the model is explored for a fixed number of

iterations. In the first step, state variables are created for each iteration. The initial

state is asserted and an SMT formula is constructed for the first iteration. Next,

iteration state variables are calculated and finally, a failure condition is asserted in

each iteration. If any of these assertions can be made true, it indicates the verification

fails.

2.2 Labeled Petri Net (LPN)

A Petri net is essentially a state transition diagram. A LPN is a variant of

Petri nets where transitions that connect two places have a labeling function. This

extension makes it possible to model AMS circuits using LPNs. A LPN can model

the continuous signals in AMS circuits that have varied rates of change. A LPN
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has places and transitions. Places are the states and transitions connect these places

indicating how the state can change. Transitions have an enabling condition, delay,

and assignments. With the ability to add rates for continuous signals, LPNs can effi-

ciently model AMS circuits. The following sections explain the syntax and semantics

for LPNs.

2.2.1 LPN Syntax

An LPN is a tuple N = 〈P , T , X, V , F , M0, Q0, R0, L〉1

• P : is a finite set of places;

• T : is a finite set of transitions;

• Tf ⊆ T : is a finite set of failure transitions;

• V : is a finite set of continuous variables (V = Vi ∪ Vo ∪ Vn);

• F ⊆ (P × T ) ∪ (T × P ) is the flow relation;

• M0 ⊆ P is the set of initially marked places;

• Q0 : V → (Q ∪ {−∞}) × (Q ∪ {∞}) is the initial range of values for each

continuous variable;

• R0 : ∆ → (Q ∪ {−∞}) × (Q ∪ {∞}) is the initial range of rates of change for

each continuous variable.

• L : is a tuple of labels defined below;

A LPN consists of a finite set of places, P , and a finite set of transitions, T . As

the model is checked against the verification property, it has a finite set of failure

transitions Tf . All these variables have an initial value and rate of change. The set V

represents the set of continuous variables that are used to represent the signal values

in the AMS circuit. The flow relation, F , describes how places and transitions are

connected. The sets M0, Q0, and R0 represent the initial markings of the places,

the initial values of the continuous variables, and the initial rates of change for the

continuous variables, respectively.

1A somewhat simplified version of LPNs is used in this thesis which is sufficient for AMS circuit
models.



12

Formal definition of the labels on a transition in an LPN is a tuple, L = 〈En, D ,

VA, RA〉:

• En : T → Pφ labels each transition t ∈ T with an enabling condition.

• D : T → Pχ labels each transition t ∈ T with a delay for which t has to be

enabled, before it can fire.

• VA : T × V → Pχ labels each transition t ∈ T and continuous variable v ∈ V

with the continuous variable assignment that is made to v when t fires.

• RA : T × ∆ → Pχ labels each transition t ∈ T and continuous rate variable

v ∈ V with the rate assignment that is made to v when t fires.

The enabling conditions are Boolean expressions, Pφ, that satisfy the following gram-

mar:

φ ::= true | ¬φ | φ ∧ φ | vi ≥ ci

where ¬ is negation, ∧ is conjunction, vi is a continuous variable, and ci is a rational

constant. The assignments are numerical formula, φe, that satisfy the following

grammar:

χ ::= ci | ∞ | vi | (χ) | − χ | χ+ χ | χ ∗ χ | INT(φ) | uniform(ci, ci) | rate(vi)

where the function INT(φ) converts a Boolean true or false to 1 or 0, respectively.

The function uniform(l, u) gives a uniform random value in the interval (l, u), and

the function rate(vi) returns the current range of rates for the continuous variable vi.

2.2.2 LPN Semantics

The current state of a LPN is the set of places which contain a token, the current

value of all discrete and continuous variables, and the current rate of change of each

continuous variable. A place with a token in it indicates the current state of the

system. A transition fires when its preceding place has a token, and its enabling

condition is satisfied. An enabling condition is one of the labels of the transitions in

the LPN. When a transition fires, after the delay period labeled on the transition,

the token moves to the next place and the assignments to the variables in the system
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are made.

Consider the portion of the simulation trace of a phase interpolator circuit shown

in Fig. 2.2(a). The LPN that LEMA generates for this portion of the trace is shown

in Fig. 2.2(b). The highlighted part shows that the control input changes from 1 to 2

V while the input clock is less than 0. This change is captured by the transition t11.

For this transition, the enabling condition encodes the fact that it should fire when

ctl is between 1.5 and 2.5 volts and the input clock is less than 0 volts. Note that our

model uses ranges rather than exact values since in analog circuits, the values may

be noisy. The delay of this transition is 0, indicating that the state change happens

immediately. Therefore, after t11 fires, the state changes to place p4. When the

system is in state p4, ctl remains the same but the input clock phi can change from

low to high. This transition enables a change in the output clock omega. However,

this output change does not take place immediately, so the transition is given a delay

of 1380 time units to reflect the time until the output changes. After this delay, the

transition fires, and when it does, the variable assignment sets omega to a random

value uniformly distributed between 2.4 and 2.5 volts to capture possible noise. The

firing of this transition, t13, takes the system to the state p13. In this state, the input

clock changes back to a low value, and it excites a change in omega to a value of 1.9

to 2 volts after a delay of 1740 time units. This firing also takes us back to the state

p4 where the circuit waits for the next rising transition on the input clock.

2.3 LPN Generation Process

This section describes how the LEMA tool generates an LPN from simulation

output files. These output files can be in one of the .dat, .csv, or .tsd formats. LEMA

extracts the information about all the input and output signals. The variables can be

set as discrete multivalue (DMV) or continuous. DMV variables are the continuous

variables that are constant for most of the time. The variables that are constant for a

predetermined percentage of time of total trace period, are set as DMV. The variables

that are not DMV are set as continuous. The whole trace is then divided into regions

and each of these regions is represented with a place in the generated LPN. These

regions are set by using thresholds on each of the variables.
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(a) (b)

omega:

p13

t15

p4

[1740]

<omega:=uniform(2.4,2.5)>

t22

[0]

t13
{(ctl ≥ 1.5) ∧ ¬(ctl ≥ 2.5) ∧ (phi ≥ 0)}

[1320]

{(ctl ≥ 2.5) ∧ ¬(ctl ≥ 3.5) ∧ ¬(phi ≥ 0)}

<omega:=uniform(1.9,2)>

{¬(phi ≥ 0)}

{(ctl ≥ 1.5) ∧ ¬(ctl ≥ 2.5) ∧ ¬(phi ≥ 0)}

t11

[0]

uniform(2.4,2.5)≡HI
uniform(1.9,2)≡LO

Figure 2.2: Model generation example.

Fig. 2.3 shows the complete LPN generated for a simulation trace in which the

control input starts at 1V, after some time changes to 2V, and finally, changes one

last time to 3V. There is a problem with this model though. Namely, it has encoded

the input sequence used by the circuit designer during simulation. If this model is

subjected to a different input sequence, it may show unusual behavior. For example,

if the input sequence changes from 1V to 3V, then the output continues to show the

phase shift for the 1V control value since there is no transition to take the system

from the 1V mode to the 3V mode directly.

To address this issue, pseudo transitions can be introduced as shown in Fig. 2.4.

These pseudo transitions are added between the places to make sure the system does

not get stuck in an incorrect state and give erroneous behavior. As shown in Fig. 2.4,

transition pt1 takes the system from ctl value of 1 to 3, solving the previous problem.

Similarly, pt0 allows the system to transition from 2 to 1, pt2 takes the system from

3 to 1, etc. It should be clear though that pseudo transitions can add substantial

complexity to the generated models.

To address this problem, the model generation method within LEMA can also

use a functional approach. This introduces a notion of care variables, and it only

introduces a new state in the model when there has been a change in a care variable.
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<omega:=uniform(2.4,2.5)>

t3 t4

p2

[1320]

<omega:=uniform(2.4,2.5)>

t5

[0]

{(ctl ≥ 2.5) ∧ ¬(phi ≥ 0)}

t6

<omega:=uniform(2.4,2.5)>

p4

[1260]

<omega:=uniform(1.9,2)>

{(ctl ≥ 2.5) ∧ (phi ≥ 0)}{¬(phi ≥ 0)}
[1740]

<omega:=uniform(1.9,2)>

{¬(phi ≥ 0)}
t7

[1720]

p0

t0

[1380]

{¬(ctl ≥ 1.5) ∧ (phi ≥ 0)} {(ctl ≥ 1.5) ∧ ¬(ctl ≥ 2.5) ∧ (phi ≥ 0)}
t1

{¬(phi ≥ 0)}

[1760]

<omega:=uniform(1.9,2)>

t2

[0]

{(ctl ≥ 1.5) ∧ ¬(ctl ≥ 2.5) ∧ ¬(phi ≥ 0)}

p5pp3pp1p0

Figure 2.3: Phase interpolator model.

pt9

[0]

{(ctl ≥ 1.5) ∧ ¬(ctl ≥ 2.5) ∧ (phi ≥ 0)}

t3 t4

p2

[1320]

<omega:=2.5>

t6

<omega:=2.5>

p4

[1260]

<omega:=2>

{(ctl ≥ 2.5) ∧ (phi ≥ 0)}{(ctl ≥ 1.5) ∧ ¬(ctl ≥ 2.5) ∧ (phi ≥ 0)} {¬(phi ≥ 0)}
[1740]

<omega:=2>

t7

[1720]

pt7

[0]

p0

t0

<omega:=2.5>

[1380]

{¬(ctl ≥ 1.5) ∧ (phi ≥ 0)}

p3pp1p0

[0]

{(ctl ≥ 1.5) ∧ ¬(ctl ≥ 2.5) ∧ (phi ≥ 0)}

<omega:=2>

t1

{¬(phi ≥ 0)}

[1760]

pt4

{¬(ctl ≥ 1.5) ∧ (phi ≥ 0)}
[0]

pt8

[0]

p5p

pt3

{(ctl ≥ 2.5) ∧ (phi ≥ 0)}

{¬(phi ≥ 0)}

{(ctl ≥ 1.5) ∧ ¬(ctl ≥ 2.5) ∧ ¬(phi ≥ 0)}

pt2

{¬(ctl ≥ 1.5) ∧ ¬(phi ≥ 0)}
[0]

{(ctl ≥ 2.5) ∧ (phi ≥ 0)}

[0]

pt6

pt1

[0]

{(ctl ≥ 2.5) ∧ ¬(phi ≥ 0)}

{¬(ctl ≥ 1.5) ∧ ¬(phi ≥ 0)}

t2

[0]

t5

{(ctl ≥ 1.5) ∧ ¬(ctl ≥ 2.5) ∧ ¬(phi ≥ 0)}
[0]

{(ctl ≥ 2.5) ∧ ¬(phi ≥ 0)}

pt5

{¬(ctl ≥ 1.5) ∧ (phi ≥ 0)}
[0]

pt0

[0]

Figure 2.4: Phase interpolator model with pseudo transitions.
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This example has only the output omega as a care variable. Therefore, the changes in

the input values are not recorded in a state. This reduces the number of places from 6

to 2, and it also dramatically reduces the number of transitions as pseudo transitions

are no longer required to encode alternative input sequences. The intuition is that

the order of the input changes is no longer encoded in the model. The generated

model is shown in Fig. 2.5.

This model can also be simplified a bit more by observing that many transitions

only differ in their enabling condition and delay. These transitions can be merged as

shown in Fig. 2.6. This final reduced model now has a single transition to set the

output omega high with the delay of this transition computed as a function of the

control input. Similarly, there is a single transition created for setting the output low.

Indeed, it should be clear that this automatically generated model is exactly what

one would expect of a phase interpolator. Namely, when the input clock changes, the

output clock changes after a delay determined by the value of the control input.

{¬(ctl ≥ 1.5) ∧ ¬(phi ≥ 0)}
[0]

<omega:=uniform(1.9,2)>

p0

p1

p2

t11

[1760]

<omega:=uniform(1.9,2)>

{¬(ctl ≥ 1.5) ∧ ¬(phi ≥ 0)}

[1720]

<omega:=uniform(1.9,2)>

t7

[1260]

t1

{¬(ctl ≥ 1.5) ∧ (phi ≥ 0)}
[1380]

<omega:=uniform(2.4,2.5)>
<omega:=uniform(2.4,2.5)>

{(ctl ≥ 2.5) ∧ (phi ≥ 0)}
t5

{(ctl ≥ 1.5) ∧ ¬(ctl ≥ 2.5) ∧ (phi ≥ 0)}
[1320]

<omega:=uniform(2.4,2.5)>

t6
{(ctl ≥ 1.5) ∧ ¬(ctl ≥ 2.5) ∧ ¬(phi ≥ 0)}

[1740]
<omega:=uniform(1.9,2)>

{(ctl ≥ 2.5) ∧ ¬(phi ≥ 0)}
t8

t0

Figure 2.5: Phase interpolator model using the functional approach.
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Initial values:

phi:=-2.5

ctl:=1

omega:=2

{(phi ≥ 0)}

[(¬(ctl ≥ 1.5) ∧ (phi ≥ 0))*1380+

<omega:=uniform(2.4,2.5)>

((ctl ≥ 1.5) ∧ ¬(ctl ≥ 2.5) ∧ (phi ≥ 0))*1320+

((ctl ≥ 2.5) ∧ (phi ≥ 0))*1260] ((ctl ≥ 2.5) ∧ ¬(phi ≥ 0))*1720]

p1

t0

{¬(ctl ≥ 1.5) ∧ ¬(phi ≥ 0)}
[0]

<omega:=uniform(1.9,2)>

p0

p2p0

t1 t2

{¬(phi ≥ 0)}

[(¬(ctl ≥ 1.5) ∧ ¬(phi ≥ 0))*1760+

<omega:=uniform(1.9,2)>

((ctl ≥ 1.5) ∧ ¬(ctl ≥ 2.5) ∧ ¬(phi ≥ 0))*1740+

Figure 2.6: Phase interpolator model with merged transitions.

2.4 Verification Property

The properties to be verified for these models are currently encoded using LPNs.

Fig. 2.7 shows the property LPN for a phase interpolator circuit. This property is

verified under all the variations allowed by the model generated for the circuit. In

this LPN, transitions tFailMin, tMax1, tMax2, and tMax3 are fail transitions. During

verification, if any of these transitions fire, the tool records the failure and generates

an error trace. This error trace is then analyzed by the designer to find the bugs in

the circuit. This model waits for the clock to go high, it then puts tokens in the 2

places, pCheckmin and pCheckMax. The place pCheckMin is used to check for a

minimum phase delay on the output clock while the place pCheckMax checks for a

maximum phase delay on the output clock. For example, if control has a value of 1,
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......{(omega ≥ 2.2)}

tClk
{(phi ≥ 0)}

[0,0]

pCheckMin pCheckMax

tReset
{¬(phi ≥ 0)}

pClk

tFailMin tMax1 tMax2 tMax3

tCheck
{(omega ≥ 2.2)}

pReset

tMin1

pCheck

tMin2 tMin3

[0,0] [1375]

{(ctl = 1)}
[1315]

{(ctl = 2)}
[1255]

{(ctl = 3)}
[1385]

{(ctl = 1)}
[1325]

{(ctl = 2)}
[1265]

{(ctl = 3)}

[0,0]

[0,0]

Figure 2.7: Property LPN for a phase interpolator.

the phase delay should be between 1375 and 1385. While pCheckMin is marked, if

omega goes high before tMin1 fires, then tFailMin fires, indicating a minimum delay

failure. If 1375 time units pass without omega changing, the token from pCheckMin

moves to pCheck. Now, it is expecting a change in omega. However, if 1385 time

units pass since the input clock before omega changes, the transition tMax1 fires

indicating a maximum delay failure. If omega does fire in time, tCheck fires moving

the model to the pReset state where it waits for the input clock to go low and high

again before checking the property again.



CHAPTER 3

PROPERTY LANGUAGE

TRANSLATOR

This chapter talks about the development of a new property language and its

conversion to LPNs. Section 3.1 talks about the need for the new language for

property specification. Section 3.2 talks about the use of SVA and real-time SVA

(RT-SVA) for property specification. It also explains the limitations of SVA and

complexity of RT-SVA for specifying AMS properties. Section 3.3 describes the

contributions of this thesis. It explains the new property language functions developed

as a part of this thesis and their conversion to LPNs. Section 3.4 explains the compiler

developed for parsing the input properties. Further, Section 3.5 demonstrates the use

of these property functions to express some AMS properties.

3.1 Motivation

As discussed previously, model checking is a type of formal verification that is

used extensively for AMS circuits. In model checking, first, a model for the circuit is

built. This model is then checked against the properties that the circuit is supposed to

satisfy. If the circuit fails to satisfy this property, verification fails. LEMA implements

model checking. It generates the LPN models for the circuits. These models are then

checked against the property. These properties are also expressed in LPN format.

Fig. 3.1 shows the property for verifying the correctness of the phase interpolator

circuit. The property is built manually. Taking a look at the property LPN, it is

clear that building LPN properties manually is a tedious and time-sconsuming task.

Therefore, a translator that can convert important AMS properties into LPNs would

be helpful.



20

......{(omega ≥ 2.2)}

tClk
{(phi ≥ 0)}

[0,0]

pCheckMin pCheckMax

tReset
{¬(phi ≥ 0)}

pClk

tFailMin tMax1 tMax2 tMax3

tCheck
{(omega ≥ 2.2)}

pReset

tMin1

pCheck

tMin2 tMin3

[0,0] [1375]

{(ctl = 1)}
[1315]

{(ctl = 2)}
[1255]

{(ctl = 3)}
[1385]

{(ctl = 1)}
[1325]

{(ctl = 2)}
[1265]

{(ctl = 3)}

[0,0]

[0,0]

Figure 3.1: An LPN model for the phase interpolator property.

3.2 Real-Time SVA

Assertions are a useful way to validate the circuit functionality. They can be

used during simulation, as well as the formal verification of the circuit. In simulation

methods, the property is a part of the behavioral model of the circuit and is checked

during simulation. Assertions can also be checked formally using model checking.

SVA can describe the properties of circuits over time. Thus, it is useful in

writing temporal properties of a circuit. Also, familiarity of designers and verification

engineers with SVA makes it a perfect choice for writing properties. Shown below are

a couple of sample SVA properties.
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assert (a == b);

assert property (@(posedge clock) req |−> ## [10:20] ack);

The first is an example of an immediate assertion where it is just checked that ’a’

is equal to ’a’. The second is an example of a concurrent assertion. It checks that at

the positive edge of the clock, if request signal is high, the ack signal should go high

within 10 to 20 clock cycles.

There are problems with writing properties of AMS circuits using SVA. As we can

see, the concurrent SVA can be checked only on an occurrence of an event. Here,

the number of clock cycles is a parameter used to describe the properties over time.

Thus, SVA is useful for writing properties of synchronous digital circuits. However,

in the case of AMS circuits, this synchronous clock is absent. Therefore, writing

temporal properties for AMS circuits becomes difficult. This problem can be solved

by introducing a pseudo clock in the circuit model and checking the assertion at the

positive edge of this pseudo clock. However, the continuous nature of all the signals

can produce unpredictable results.

To address this problem, the authors in [34] have proposed real-time regular

expressions as an extension to the existing SVA regular expressions. These RT-SVA

expressions use discrete-time semantics for digital sequences and real-time semantics

useful for AMS circuit verification. Real-time sequences are specified using the

grammar below:

R ::= @(κ)(b) | R ##1 R’ | R ##0 R’ | R or R’ | R intersect R’ | R[*0] | R[+]

| b | b[*α [ + ] : β [ - ]]

Here,

• κ is an event and b is a Boolean expression. @(κ)(b) specifies that b is true at

a point near to κ.

• ##1 and ##0 are the nonoverlapping and overlapping concatenation operators.

Thus, R ##1 R’ specifies that R is satisfied followed by R’ being satisfied. They
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do not need to be satisfied at the same time instant while R ##0 R’ specifies

that there is an instant in time where they are both satisfied.

• or is the union operator. R or R’ specifies that in an interval, either R or R’ is

satisfied.

• intersect is the intersection operator. R intersect R’ specifies that in an interval,

R and R’ are both satisfied.

• [∗0] specifies zero repetitions. Thus, R[*0] specifies that R is empty.

• [+] specifies one or more repetitions.

• α [ + ] indicates an instant of time greater than amount α and β [-] indicates

an instant of time just less than β. Thus, b[*α [ + ] : β [ - ]] specifies that b is

true between α and β time units.

These basic sequences are used to derive other sequences such that its application

to practical AMS circuits becomes easy. Shown below is the phase interpolator

property expressed using RT-SVA:

(phi ≥ 0)[∼> 1] ##0

(((ctl == 1)[∼> 1] ##0

(!(omega > 2.2))[∗1375 : 1385] ##1 (omega > 2.2))

or

((ctl == 2)[∼> 1] ##0

(!(omega > 2.2))[∗1315 : 1325] ##1 (omega > 2.2])

or

((ctl == 3)[∼> 1] ##0

(!(omega > 2.2))[∗1255 : 1265] ##1 (omega > 2.2))) ##1

(phi < 0)[∼> 1]

While RT-SVA does allow AMS properties such as those in [40] to be specified, it

can be tricky and somewhat tedious to read and write these verification properties in

RT-SVA.
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3.3 Property Language

To make the properties easy to read and write, this thesis proposes a new property

language which is then converted to a property LPN automatically. In LEMA, the

property is given as an input file with a .prop extension. The Listing 3.1 below is

the format of this property file. The property starts with the property name. It is

then followed by the variable declaration. Variables can be of two types; Boolean and

real. After this, the property is specified in an always block. The always block here

implies that the property statements in this block are checked repeatedly, i.e., after

the property is finished checking once, the state returns to the beginning, enabling

the verification of the property again. Note that this does not enable the threaded

execution of the property.

property <name>{
<d e c l a r a t i o n s>
always{
<statements>

}
}

Listing 3.1: Format for a property in new language.

Examples below show the property functions and their conversion to RT-SVA and

property LPN.

1. wait(b)

Here, wait(b) waits for b to be true. Here, b is a Boolean expression or a Boolean

signal. LPN translation of the same is as shown in Fig. 3.2. Here, transition t0

fires when b becomes true. There is no time limit; t0 waits as long as necessary

for b to become true. The RT-SVA translation for this is, b[∼> 1]. This is the

derived form of the basic syntax, !b[∗0 : $] ##1 b. Here, the first part matches

the sequence where b is not true for any time between 0 and infinity and the

sequence after that where b becomes true.

2. waitPosedge(b)

waitPosedge(b) waits for the positive edge of expression b. LPN translation of
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t0

{b}
[0]

p1

p0

Figure 3.2: An LPN conversion for the wait(b) statement.

the same is as shown in Fig. 3.3. The RT-SVA translation for this is, !b[∼>

1] ##1 b[∼> 1]. Note that this is equivalent to wait(∼ b) followed by wait(b).

3. wait(b,d)

wait(b,d) waits for d time units for b to be true. Here, b is a Boolean expression.

LPN translation of the same is as shown in Fig. 3.4. If b is false initially, the

failure transition’s enabling condition is satisfied, but it has a delay of d time

units. If in this time interval, b goes true anytime, t0 is fired and as it has 0

delay, it is fired immediately. If b does not become true, tFail0 is fired and a

failure is recorded. The RT-SVA translation for this is, !b[∗0 : d] ##1 b. Here,

the first expression checks that b is false for sometime between 0 and d. The

sequence then concatenates this expression with the one where b is true.

4. assert(b,d)

assert(b,d) asserts that the expression b is true for d time units. Here, b is a

Boolean expression or a Boolean signal. b has to be true continuously for d time

units. If b becomes true and then goes false within d time units, a failure is

recorded. LPN translation of the same is as shown in Fig. 3.5. t0 fires when

b becomes true after a delay of d time units. In the meantime, if b becomes
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p1

p2

p0

t1

{b}
[0]

t0

{¬(b)}
[0]

Figure 3.3: An LPN model for the waitPosedge(b) statement.

false, tFail0 is fired. The RT-SVA translation for this is, b[∗d : d]. Here, the

expression checks that b is true for d time units exactly.

5. assertUntil(b1,b2)

assertUntil(b1,b2) asserts that b1 is true until b2 becomes true. Here, b1

and b2 are Boolean expressions. LPN translation of the same is as shown in

Fig. 3.6. Here, when d becomes true, t0 fires but if b1 becomes false when

b2 is not true, a fail transition fires. The RT-SVA translation for this is,

b1 & !b2[∗0.0 : $] ##1 b2. This sequence checks that b1 is true when b2 is

false and later b2 becomes true.
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tFail0

{¬(b)}
[d]

pFail0

t0

{b}
[0]

p1

p0

Figure 3.4: An LPN model for the wait(b,d) statement.

tFail0

{¬b}
[0]

pFail0

t0

{b}
[d]

p1

p0

Figure 3.5: An LPN model for the assert(b,d) statement.
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tFail0

[0]

pFail0

t0

{b2}
[0]

p1

p0

{¬(b1)&¬(b2)}

Figure 3.6: An LPN model for the assertUntil(b1,b2) statement.

6. Our property language also includes an if-elseif construct that be written as

if (b1) {

R1

}else if (b2) {

R2

} else {

R3

}

which in RT-SVA is equivalent to :

b1 ##0 R1

or

(b2 & !b1) ##0 R2

or

(!b2 & !b1) ##0 R3

Fig. 3.7 shows the LPN conversion for the if-elseif function.
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R1 R3R2

[0]

t6

{¬(b1)&¬(b2)}

pEnd0

t3

[0]

{¬(b1)&(b2)}
t0

[0]

pStart0

{b1}

Figure 3.7: An LPN model for the if-elseif statement.

3.4 Property Compiler

The functions described above are applied to generate verification properties of

AMS circuits. In a property where these functions are used together, LPNs are gen-

erated for these functions individually and then stitched together, thus producing the

complete property net. A parser generator, Another Tool for Language Recognition

(ANTLR) is implemented to automate this LPN generation in LEMA. ANTLR takes

as input a grammar that specifies a language and generates as output the source

code for a recognizer for that language. To perform any further actions upon the

recognition of this grammar, these actions can be embedded within the code. In our

case, these actions are producing output LPNs for the input grammar. Thus, after

the property is given as input to LEMA, it gets parsed and if there is no syntax error

with it, an LPN is generated for it.

The algorithm to generate the property LPN from the input .prop file is shown

below.
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1. Parse the name of the input property.

2. Parse the variable names and types. Add the variable names to the LPN

variables list.

3. Parse the first statement, generate the LPN, put the token in its first place.

4. While parsing the next statement, merge the last place of the previous LPN

with the first place of the next LPN.

5. Repeat 4 for all the statements in the property.

6. At the end of the always loop, connect the last place with the first place of the

LPN, thus making a loop.

3.5 Examples

This section demonstrates the use of the property language to express the prop-

erties of AMS circuits. It also shows their equivalent RT-SVA expression form and

LPN model generated automatically. The time to convert these propertes to LPN is

less than a second.

1. Whenever a goes from zero to one, b remains low for at least 5 ms.

This property can be expressed as shown in the Listing 3.2 below.

property example1 {
boolean a ;
boolean b ;
always{

waitPosedge ( a ) ;
assert (˜b , 5 ) ;

}
}

Listing 3.2: Example 1.

RT-SVA conversion for this property is as follows:

!a[∼> 1] ##1 a[∼> 1] ##1 !b[∗d : d]
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This gets translated to the LPN shown in Fig. 3.8.

2. After a goes high, b and c must intersect within 25 ns.

This can be expressed as shown in the Listing 3.3 below.

property example2{
boolean a ;
boolean b ;
boolean c ;
always{

waitPosedge ( a ) ;
wait (b&c , 2 5 ) :

}
}

Listing 3.3: Example 2.

RT-SVA conversion for this property is as follows:

!a[∼> 1] ##1 a[∼> 1] ##1 !(b & c)[∗0 : 25] ##1 (b & c)

LPN translation for this example is shown in Fig. 3.9.

3. The delay between the second rising crossing of a at 2.5V and the first falling

crossing of b at 4.5V is 250.0ns with a tolerance of 2.5ns.

This can be expressed as shown in the Listing 3.4 below.

property example3{
real b ;
real a ;
always{

assertUntil (b>45,a>=25);
assertUntil (b>45,a<25);
assertUntil (b>45,a>=25);
assert (b>45 ,2475);
wait (b<=45 ,50);

} }

Listing 3.4: Example 3.
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b = unknown

a = unknown

t3

[0]

p0

t2

{¬b}
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{a}
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{¬(¬b)}
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t0

{¬(a)}
[0]
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Figure 3.8: An LPN model for example 1.
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t3

[0]

p0

t2

{b&c}
[0]

p3

t1

{a}
[0]

p2

tFail0

{¬(b&c)}
[25]

pFail0

t0

{¬(a)}
[0]

p1

Figure 3.9: An LPN model for example 2.

RT-SVA conversion for this property is as follows:

((b > 45) && !(a ≥ 25)[∗0 : $] ##1 (a ≥ 25)) ##1

((b > 45) && !(a < 25)[∗0 : $] ##1 (a < 25)) ##1

((b > 45) && !(a ≥ 25)[∗0 : $] ##1 (a ≥ 25)) ##1
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((b ≤ 45)[∗2475 : 2475]) ##1

(!(b ≤ 45)[∗0 : 50] ##1 (b ≤ 45))

LPN translation for this example is shown in Fig. 3.10.

4. Finally, phase interpoaltor property can be expressed as shown in the Listing 3.5

below.

property Phase In te rpo la to r {
real c t l ;
real omega ;
boolean phi ;
always{

wait ( phi>=0);
i f ( c t l =1){

assert ( omega<22 ,1375);
wait ( omega>=22 ,10);

}
else i f ( c t l =2){

assert ( omega<22 ,1315);
wait ( omega>=22 ,10);

}
else i f ( c t l =3){

assert ( omega<22 ,1255);
wait ( omega>=22 ,10);

}
wait ( phi <0);

}
}

Listing 3.5: Phase interpolator property.

RT-SVA conversion for this property is as follows:

(phi ≥ 0)[∼> 1]##1((
(ctl == 1)##0

((omega < 22)[∗1375, 1375]##1

!(omega ≥ 22)[∗0 : 10]##1(omega ≥ 22))
)

or
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Figure 3.10: An LPN model for example 3.
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(
(ctl == 2)&!(ctl == 1)##0

((omega < 22)[∗1315, 1315]##1

!(omega ≥ 22)[∗0 : 10]##1(omega ≥ 22))
)

or(
(ctl == 3)&!(ctl == 2)&!(ctl == 1)##0

((omega < 22)[∗1255, 1255]##1

!(omega ≥ 22)[∗0 : 10]##1(omega ≥ 22))
))

##1

(phi < 0)[∼> 1]

Fig. 3.11 shows the LPN translation of this property.

3.6 Verification

LEMA is used to verify the phase interpolator circuit model with the property

built using the property translator explained in the previous sections. First, LEMA is

used to create LPN models for three different PI circuits that differed in the number

of control inputs. These circuits allowed for 4, 8, or 16 different control values

corresponding to 4, 8, or 16 different out phases, respectively. Fig. 3.12 shows the

model generated for PI circuit with 4 control signals. Property to be verified against

this model is shown in the Listing 3.6 below. Here, for ctl value of 10, property checks

that output omega is low for 1699 time units and then goes high within the next 102

time units.

The results of the verification of the PI circuits for 4, 8, 16 inputs are given as

the first three entries of Table 3.1. As can be seen from this table, the phase shift

of the clock is successfully verified to be correct. To simulate an output clock that

goes high too soon, the property is changed for the 4 control signals PI so that the

assert statement for control value 40 asserts that omega is between 22 and 23 for 680

time units instead of 759. As is seen in the fourth entry of Table 3.1, the property

correctly signals a failure. Each of these checks is done with an environment that

could nondeterministically change the control signal shortly before the next time the

input clock goes high. If this restriction is removed and the select signal is allowed to

change at any time, a failure is detected, as indicated by the fifth result of Table 3.1.
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Figure 3.11: An LPN model for Phase Interpolator Property.
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property PIVer{
real phi ;
real omega ;
boolean c t l ;
always{

wait ( phi>=0);
i f (˜ ( c t l >=17)){

assert ( omega=uniform ( 2 2 , 2 3 ) , 1 6 9 9 ) ;
wait ( omega=uniform ( 2 4 , 2 5 ) , 1 0 2 ) ;

}
else i f ( ( c t l >=17) & ˜( c t l >=25)){

assert ( omega=uniform ( 2 2 , 2 3 ) , 1 4 7 9 ) ;
wait ( omega=uniform ( 2 4 , 2 5 ) , 2 2 ) ;

}
else i f ( ( c t l >=25) & ˜( c t l >=32)){

assert ( omega=uniform ( 2 2 , 2 3 ) , 9 9 9 ) ;
wait ( omega=uniform ( 2 4 , 2 5 ) , 2 2 ) ;

}
else i f ( c t l >=32){

assert ( omega=uniform ( 2 2 , 2 3 ) , 7 5 9 ) ;
wait ( omega=uniform ( 2 4 , 2 5 ) , 2 ) ;

}
wait (˜ ( phi >=0));

}
}

Listing 3.6: PI verification property.

This failure occurs because after the property begins to check the output phase for

one control signal, the environment can change the control signal to a different value,

resulting in a different phase. The property then continues to check for the behavior

for the previous control which results in a failure.
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Table 3.1: Verifying Phase Interpolators.

Property Time in s States Verifies?

PI With 4 Control Signals 0.135 126 Yes

PI With 8 Control Signals 0.277 300 Yes

PI With 16 Control Signals 1.362 769 Yes

PI With Short Delay 0.083 14 No

PI With Changing Controls 0.779 2407 No



CHAPTER 4

MODEL GENERATION AND

INTERPOLATION

This chapter describes methods implemented for improved model generation and

generalization of these models. Section 4.1 describes the motivation for these improve-

ments. It shows the VCO model generated by LEMA and explains the limitations

of this generated model. This section also explains how the current LPN generation

methodology lacks the ability to separate the transient period from the steady-state

of the circuit. Also, it states the need for generalization of these models. Section 4.2

and Section 4.3 describe the contributions of this thesis. In that, Section 4.2 discusses

the steps taken to separate the transient state of the circuit from the steady-state with

the addition of the stable variable. Section 4.3 focuses on generalization of the models

by implementing a linear abstraction methodology, interpolation.

4.1 Motivation

The motivating example for this chapter is that of a phase locked loop (PLL).

Fig. 4.1 shows a block diagram of a PLL circuit. A PLL is a control system that

tries to generate an output signal whose phase is related to the phase of the input

reference signal. The circuit consists of a variable frequency oscillator and a phase

detector. This circuit compares the phase of the input signal with the phase of the

signal derived from its output oscillator and adjusts the frequency of its oscillator to

keep the phases matched. The signal from the phase detector is used to control the

oscillator in the circuit. A typical PLL consists of the following circuit blocks.

1. Phase frequency detector (PFD) : This circuit has two inputs, one is the ref-

erence input and the other is the feedback from the VCO. It compares these
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PFD CP LPF VCO

Divide by N

Ref up

down

Out

Figure 4.1: Block diagram for a phase locked loop.

two signals and outputs the ’up’ or ’down’ signal depending upon the phase

difference between the two signals.

2. Charge pump (CP) : This circuit is a kind of DC to DC converter that uses

capacitors as energy storage elements to create either a higher or lower voltage

output. It gets input from the PFD and generates the voltage that is propor-

tional to the phase difference between the two signals.

3. Low pass filter (LPF) : This circuit gets the input from the charge pump. The

output from the charge pump is not smooth but has noise. The LPF is used to

remove this noise. It is necessary for the stability of the circuit performance.

4. Voltage controlled oscillator (VCO) : This circuit is a variable frequency os-

cillator that generates the output whose frequency is set by the input control

voltage.

5. Frequency divider : This is an optional circuit in the feedback loop. It is used

to generate a wide range of output frequencies from the single reference input

signal. This is particularly useful in radio applications.

PLLs are widely used in radios, telecommunications, computers, and other elec-

tronic applications. They may generate stable frequencies, recover a signal from

a noisy communication channel, or distribute clock timing pulses in digital logic

designs such as microprocessors. The notion is, frequency is a derivative of phase. So,

keeping the input and output phase in lock step implies keeping the input and output

frequencies in lock step. Thus, a phase-locked loop can track an input frequency, or

it can generate a frequency that is a multiple of the input frequency. Based upon
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the types of circuit blocks, a PLL circuit can be analog or digital. In an analog PLL,

the phase detector is an analog multiplier circuit while in a digital PLL, it consists

of digital circuits like XOR gates and edge-trigger JK flip-flops.

A block diagram of a digital PLL circuit is shown in Fig. 4.2. In this circuit,

a digital low pass filter (DLF) and a digital phase detector (DPD) are the digital

components. A digital-to-analog converter (DAC) and time division converter (TDC)

are the AMS components while the VCO is analog in nature. The DPD detects the

phase difference between the input wave and the reference wave. It is in digital format.

To filter the noise, it is passed through the DLF. The digital output of the DLF is

converted to analog with a DAC. It is then given as input to the VCO. The VCO

output is given as input to the TDC. In the TDC, the 2 signals to be compared are

passed through a chain of 64 delay elements. The difference in their phase at each

stage is analyzed to convert the phase difference into a digital form. This is given as

input to the DPD. We have considered the VCO circuit for our experiments.

As described above, any change on the input to the VCO produces a change in

the frequency of the output signal of the VCO. Fig. 4.3 shows a VCO simulation

trace which shows the VCO output for the control voltage of 2V. Fig. 4.4 shows the

LPN model for the VCO circuit that is generated for control input values of 2V,

3V, and 4V. The simulation traces for these values are generated separately and then

taken together to generate the model. In this model, after every control input change,

the model immediately goes to the steady state and remains in that state until the

next control input change. However, in AMS circuits, it takes time for the circuit to

produce the steady-state output after the control input voltage is changed. In the

VCO example, any change on input produces a change in the frequency of the output

signal. After the change in input, the output does not produce the steady-state output

frequency immediately. Instead, it goes through a transient period where the output

frequency is not fixed. The transient causes the delay on transitions t13, t23, and t28

to have a wide variance which represents that the output frequency is never constant

but keeps changing always. This does not correctly model the VCO circuit behavior.

Thus, modeling this transient period becomes necessary to bring the model closer to

its real behavior.



43
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Figure 4.2: A digital PLL design.

Figure 4.3: A simulation trace for a VCO.
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As shown in Fig. 4.4, the model is generated only for the input values considered

during the simulation. However, during verification, the circuit might get checked

for the input values which are not considered during simulation. This calls for an

exhaustive simulation of the circuit under test, but doing this is not often practical.

For a VCO, there is an infinite number of possible control voltages, since it is a

continuous signal. Therefore, instead of taking this approach, if the input-output

relationship of the circuit signals is known, then models can be generated for the

information not available directly through simulation data. We have implemented a

linear abstraction, interpolation, to make the model more accurate.

4.2 Modeling Transient Behavior

In the LPN in Fig. 4.4, there are 3 loops which model the VCO behavior for 3

ctl input voltages, i.e., 2V, 3V, and 4V. As seen in the first loop, at transition t20,

ctl input changes to 2V, and immediately (delay of 0) output is assigned a low value.

After that, at transition t24 after the delay of 1.9 time units, the output is assigned

a high value. After this, the model goes into a loop where the output is assigned a

low and high value alternately modeled by transitions t23 and t24. As seen here, for

t23, the delay is not fixed, but it keeps changing between 1.3 and 10.9 time units.

This variance is a lot more than the actual time in the steady-state circuit behavior.

Same for t22. This behavior is added in the model because of the initial transient

period seen in Fig. 4.3. Thus, it is important to separate this transient state from

the steady state. Improvement has been made in LEMA to capture this transient

behavior. For this, a notion of a control variable is introduced. It is the variable,

which, when it changes value, the output shows a transient behavior before settling

down to its steady-state value. To capture this behavior, a new variable, stable, is

added to the simulation data. The stable variable added to the data initially has

a constant value of 1. Every time there is a change in the control input variable,

the system goes through a transient period. The value of this stable variable is 0

during this transient period, and it is set to 1 when the system exhibits steady-state

behavior. After setting the stable variable, the rates, values, and durations are again
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Figure 4.4: VCO LPN model.
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calculated for the whole trace. The LPN is updated after this.

The stable variable is added to a simulation trace using the steps shown below:

1. Start at the beginning of the simulation trace (i = 0).

2. Search for the next change in a control input or the end of the trace, set this

position to j.

3. Starting at j − 1, search backwards for changes in the output value, and at

each change, record the duration it took for switching from one output value to

another.

4. Check that these durations are the same as the previous duration within some

tolerance.

5. If it is not within the tolerance, then mark this point k.

6. Mark all data points between i and k − 1 as unstable and from k to j − 1 as

stable.

7. Set i to j − 1.

8. If i is not the end of the trace, go back to step 2.

The LPN for the generation of the stable variable is shown in Fig. 4.5. It sets the

stable low initially, then it sets it back to high after the transient has passed. The

stable variable is set low after every change on the control input. After the transient

period has passed, it is set high. The model of the VCO after adding this stable

variable is shown in Fig. 4.6. As seen in this model, at transition t20, the control

input changes to 2V and the stable variable is low. Thus, it models the transient

period of the circuit. t23 and t22 still have variable delay, but now it represent the

transient period. After the stable has been assigned a high value, transition t21 fires,

indicating that the system has gone into a steady state. t25 and t26 have fixed delays

as is expected to be the case in the steady state.

This model can be further reduced by applying the functional approach discussed

in Chapter 2. Here, the output is made a care variable. Thus, a new place is generated
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Figure 4.5: LPN model for stable generation.
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{¬(stable ≥ 0.5)}
t14

<out:=uniform(4.9,5)>

[uniform(1.7,2)]

{¬(stable ≥ 0.5)}

t13
{¬(stable ≥ 0.5)}
[uniform(1.1,10.7)]

<out:=uniform(0,0.1)>
<out:=uniform(0,0.1)>

<out:=uniform(0,0.1)>

p13

p12

p11

p10

<out:=uniform(4.9,5)>

p18

p19

p20

p21

p22

Figure 4.6: Generated LPN model for a VCO with a stable variable added to account
for transient behavior due to changes in control input, ctl.
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only when there is a change in the output value. The resulting model can be seen

in Fig. 4.7. Here, at t0, stable is low, thus modeling transient behavior. When the

output goes low, transition t2 is fired and when the output goes high, transition t3

is fired. The range of delays for these transitions are the functions of the control

input values. Then, after stable goes high, transition t4 fires, taking the model to the

steady state. When the output goes low, transition t5 is fired, and when the output

goes high, transition t6 is fired. Delay values are fixed for the transitions and are

functions of the control input values. In the figure, the transition delays are defined

as follows:

f0 : (∼ (ctl ≥ 2.5)) ∗ 1.9 + ((ctl ≥ 2.5)& ∼ (ctl ≥ 3.5)) ∗ 1.9 + (ctl ≥ 3.5) ∗ 1.9

f1 : (∼ (stable ≥ 0.5)& ∼ (ctl ≥ 2.5)) ∗ uniform(1.3, 10.9) + (∼ (stable ≥ 0.5)& ∼

(ctl ≥ 3.5))∗uniform(1.1, 10.7)+(∼ (stable ≥ 0.5)&(ctl ≥ 3.5))∗uniform(1.1, 10.7)

f2 : (∼ (stable ≥ 0.5)& ∼ (ctl ≥ 2.5)) ∗ uniform(1.7, 2) + (∼ (stable ≥ 0.5)&(ctl ≥

2.5)& ∼ (ctl ≥ 3.5)) ∗ uniform(1.5, 1.7) + (∼ (stable ≥ 0.5)&(ctl ≥ 3.5))

∗ uniform(1.3, 1.5)

f3 : ((stable ≥ 0.5)& ∼ (ctl ≥ 2.5)) ∗ 1.5) + ((stable ≥ 0.5)&(ctl ≥ 2.5)& ∼ (ctl ≥

3.5)) ∗ 1.3 + ((stable ≥ 0.5)&(ctl ≥ 3.5)) ∗ 1.2

f4 : ((stable ≥ 0.5)& ∼ (ctl ≥ 2.5)) ∗ 2) + ((stable ≥ 0.5)&(ctl ≥ 2.5)& ∼ (ctl ≥

3.5)) ∗ 1.5 + ((stable ≥ 0.5)&(ctl ≥ 3.5)) ∗ 1.3

4.3 Interpolation

In the previous sections, the LPN model for the VCO circuit is generated for the

ctl input values in the simulation data. It is difficult and often impossible to simulate

the circuit for all the possible input voltages. But sometimes, an engineer has to

model the circuit for the data that are not available in simulation. To make this

possible, linear abstraction methods can be used. We have implemented a type of

linear abstraction, interpolation. This work assumes that though analog circuits are

considered nonlinear, it is always possible to convert a circuit to a set of variables

where the linear abstraction holds [36]. Applying this to the VCO circuit, we can

safely assume that although the circuit is nonlinear, it can be converted to a domain
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{f0}

        {f1}

{f3} {f4}

{f2}

{(stable ≥ 0.5)}
pt6

[0]

{¬(stable ≥ 0.5)}
pt5

[0]

pt7

[0]

{(stable ≥ 0.5)}

{¬(stable ≥ 0.5)}
pt4

[0]

p2

p1

[0]
{(stable ≥ 0.5)}

t4

p4

p3p0

p5p0

<out:=uniform(4.9,5)>

t1

<out:=uniform(4.9,5)>

t5

<out:=uniform(0,0.2)>

t6

<out:=uniform(4.9,5)>

t2

<out:=uniform(0,0.2)> <out:=uniform(4.9,5)>

t3

<out:=uniform(0,0.2)>

[0]

{¬(stable ≥ 0.5)}
t0

p0

Figure 4.7: Functional VCO LPN model that accounts for transient behavior.
.
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where its input and output are in a linear relationship.

To implement the interpolation, the following steps are followed:

1. For each transition t, consider its start region, end region, and the region of the

control variable associated with that transition.

2. Then, find a transition t′ where the start region and end region is the same but

the region of the control variable has moved to the next highest region.

3. Get the delay associated with both the transitions.

4. Generate the delay expression using this data.

5. For every transition which has a control variable change associated with it,

change the delay values with the expression generated above.

6. Change the enabling conditions on each of these transitions.

The straight line equation, y = m ∗ x+ c is considered for interpolation, where,

y = ’y’ coordinate

m = slope of the line

x = ’x’ coordinate

c = intercept of the line

In the VCO example, our method has to interpolate the output frequency gener-

ated for a particular control input value that is not present in the simulation data. In

this case, the control input value is the ′x′ coordinate. The delay on the transitions

where the output changes as a response to the change in input gets translated to the

output frequency of the signal. Thus, our method has to consider the delays on such

transitions for interpolation. Thus, the delay is the ′y′ coordinate. Starting from the

lowest threshold, our method obtains pairs of ′x′ and ′y′ coordinates and obtains the

delay expression for the region between two consecutive pairs, thus a piecewise linear
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interpolation for the complete trace.

For the pair of coordinates, (xi, yi) and (xi+1, yi+1),

the slope m = yi+1−yi

xi+1−xi
and

the intercept c = yi − yi+1−yi

xi+1−xi
∗ xi

The generated equation is,

y = yi+1−yi

xi+1−xi
∗ x+ [yi − yi+1−yi

xi+1−xi
∗ xi]

After applying interpolation on the delay values, the delays in Fig. 4.6 get trans-

lated to the following form:

f0 : (∼ (ctl ≥ 3)) ∗ 1.9 + ((ctl ≥ 3)& ∼ (ctl ≥ 4)) ∗ 1.9 + (ctl ≥ 4) ∗ 1.9

f1 : (∼ (stable ≥ 0.5)& ∼ (ctl ≥ 3))∗

uniform((ctl ∗ (−0.2) + 1.7), (ctl ∗ (−0.2) + 11.3))+(∼ (stable ≥ 0.5)&(ctl ≥ 3)& ∼

(ctl ≥ 4))∗

uniform((ctl ∗ (0) + 1.1), (ctl ∗ (0) + 10.7)) + (∼ (stable ≥ 0.5)&(ctl ≥ 4))∗

uniform((ctl ∗ (0) + 1.1), (ctl ∗ (0) + 10.7))

f2 : (∼ (stable ≥ 0.5)& ∼ (ctl ≥ 3))∗

uniform((ctl ∗ (−0.2) + 2.1), (ctl ∗ (−0.3) + 2.6))+(∼ (stable ≥ 0.5)&(ctl ≥ 3)& ∼

(ctl ≥ 4))∗

uniform((ctl ∗ (−0.2) + 2.1), (ctl ∗ (−0.2) + 2.3)) + (∼ (stable ≥ 0.5)&(ctl ≥ 4))∗

uniform((ctl ∗ (−0.2) + 2.1), (ctl ∗ (−0.2) + 2.3))

f3 :((stable ≥ 0.5)&∼ (ctl ≥ 3))∗(ctl ∗ (−0.2) + 1.9))+((stable ≥ 0.5)&(ctl ≥

3)& ∼ (ctl ≥ 4))∗(ctl ∗ (−0.1) + 1.6)+((stable ≥ 0.5)&(ctl ≥ 4))∗(ctl ∗ (−0.1) + 1.6)

f4 :((stable ≥ 0.5)& ∼ (ctl ≥ 3))∗(ctl ∗ (−0.5) + 3))+((stable ≥ 0.5)&(ctl ≥ 3)& ∼

(ctl ≥ 4))∗(ctl ∗ (−0.2) + 2.1)+((stable ≥ 0.5)&(ctl ≥ 4))∗(ctl ∗ (−0.2) + 2.1)

In the above equations, the new interpolated delay equations are highlighted.

This model generation takes around 1 to 2 seconds. Also, the difference in time

taken to generate the model after addition of the stable generation and after the

implementation of interpolation is roughly the same.



CHAPTER 5

CONCLUSIONS

Verification is becoming an important part of the overall design cycle with the

increasing functional complexities of electronic systems. Simulation is a less effective

approach towards validating the functionality of such large systems. Model checking

methodology is becoming a widely used method to verify digital circuits. For this

reason, it is very important to model the circuit at a level which is easy to build,

use, and also preserves the behavior of the circuit under consideration. Boolean

abstraction of digital signals has made modeling and model checking easier but the

continuous nature of analog signals has made this task difficult. There is a need of a

common and robust modeling methodology for AMS circuits.

5.1 Summary

For verifying the circuits, along with accurate models, it is important to have prop-

erties that can describe the required behavior. This thesis presents the methodology

to specify temporal properties of the circuit and convert these to LPNs. This thesis

also presents a methodology to improve the generated models. Major contributions

of this thesis are as follows,

1. A new property language to specify the temporal properties of a system and its

translation to LPNs.

2. Methodology to detect and model the unstable region of the circuit operation.

3. Generalization of the model by linear interpolation of the input signals.
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5.2 Future Work

All these contributions have tried to address some problems on the modeling front.

However, there is still a vast scope of research in this area. Listed below are some of

the major areas for further exploration.

• Expanding the scope of property translator with more statements.

• Equivalence checking.

• Interpolation on the output values.

5.2.1 Expanding the Scope of the Property Language

The property language explained in the document is used to express properties

of AMS circuits. The document also demonstrates some examples. These example

properties are expressed using the statements that are explained in the document. To

be able to specify more complex AMS properties, it is necessary to construct more

statements such as a statement to check the circuit behavior where the transient state

and steady-state are separated by addition of a stable variable.

5.2.2 Equivalence Checking

The model generation methodology can be used to check the equivalence between

two circuits. It can be between an original circuit and its optimized version, or

it can be two circuits designed in two different ways, for example, an analog PLL

and a digital PLL. After generating the models for the two circuits with the same

functionality, if the two models show the same abstract behavior, the circuits are

considered equivalent.

5.2.3 Interpolation on the Output Values

This document has demonstrated the application of interpolation to generalize the

models. But currently, this is being applied to the signals where the output parameter

that gets impacted is time, for example: phase interpolator, where the output is the

delayed version of the input. Thus, delay (time) is interpolated. However, in the
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circuits like an amplifier, the parameter that gets impacted is the output voltage

level. Interpolation will be a useful tool for analyzing such circuits.
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